gait termination
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 15)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Vol 10 (23) ◽  
pp. 5539
Author(s):  
Xuanzhen Cen ◽  
Lidong Gao ◽  
Meimei Yang ◽  
Minjun Liang ◽  
István Bíró ◽  
...  

Objective: The efficacy of arch orthoses in posture adjustment and joint coordination improvement during steady-state gait is well documented; however, the biomechanical changes of gait sub-tasks caused by arch support (AS), especially during gait termination, are poorly understood. Hence, this study aimed to investigate how the acute arch-supporting intervention affects foot–ankle coordination and coordination variability (CV) in individuals with flatfoot during unplanned gait termination (UGT). Methods: Twenty-five male patients with flatfoot were selected as subjects participated in this AS manipulation study. A motion capture system was used for the collection of the metatarsophalangeal joint (MPJ) and ankle kinematics during UGT. MPJ-Ankle coordination and CV were quantified using an optimized vector coding technique during the three sub-phases of UGT. A paired-sample t-test from the one-dimensional statistical parametric mapping of one-dimensional was applied to examine the data significance. Results: Significant differences for the joint kinematics between non-arch-support (NAS) and AS were exhibited only in the MPJ transverse plane during the middle and later periods of UGT (p = 0.04–0.026). Frontal plane MPJ-ankle coordination under AS during stimulus delay significantly decreased from 177.16 ± 27.41° to 157.75 ± 32.54° compared with under NAS (p = 0.026); however, the coordination pattern had not changed. Moreover, no significant difference was found in the coupling angle variability between NAS and AS in three planes during sub-phases of UGT (all p > 0.5). Conclusions: The detailed intrinsic characteristic of AS induced acute changes in lower extremity segment coordination in patients with mild flatfoot has been recorded. This dataset on foot-ankle coordination characteristics during UGT is essential for explaining foot function and injury prediction concerning AS manipulation. Further studies are expected to reflect lower limb inter-joint coordination during gait termination through the long-term effects of AS orthoses.


2021 ◽  
Vol 11 (4) ◽  
pp. 1871
Author(s):  
Xuanzhen Cen ◽  
Zhenghui Lu ◽  
Julien S. Baker ◽  
Bíró István ◽  
Yaodong Gu

Although values of arch stiffness index (ASI) have been used to evaluate arch structure and injury susceptibility, investigations are limited regarding the influence of ASI on biomechanical characteristics during gait termination, which involves a challenging balance transition from walking to standing. This study aimed to explore plantar pressure distribution and lower extremity joint kinematic differences between individuals with both a stiff and flexible arch (SA and FA, respectively) during planned and unplanned gait termination (PGT and UGT, respectively). Following the calculation of ASI, sixty-five asymptomatic male subjects were classified and participated in two types of gait termination tests to acquire kinematic and plantar pressure data. Parameters were compared between SA and FA using a two-way ANOVA during PGT and UGT, respectively. UGT was found to have a larger range of motion on the hip joint in the sagittal plane and the knee joint in the transverse plane when compared with PGT. The differences in the kinematic characteristics of the lower limb joints caused by the difference in arch stiffness are mainly concentrated in the ankle and metatarsophalangeal joints. Plantar pressure data, represented by the maximum pressure, showed significant differences in the forefoot and rearfoot areas. These results suggest that ASI could change freedom of motion of the lower limb joints, and UGT tends to conduct a compensatory adjustment for the lower extremity kinetic chain. An understanding of the biomechanical characteristics of arch structures may provide additional insights into foot function and injury prediction during gait termination.


2021 ◽  
Vol 84 ◽  
pp. 238-244
Author(s):  
Lorenzo Rum ◽  
Paolo Brasiliano ◽  
Giuseppe Vannozzi ◽  
Luca Laudani ◽  
Andrea Macaluso

Author(s):  
Huiyu Zhou ◽  
Xuanzhen Cen ◽  
Yang Song ◽  
Ukadike C. Ugbolue ◽  
Yaodong Gu

2020 ◽  
Vol 73 (12) ◽  
pp. 2309-2316
Author(s):  
Natalie Snyder ◽  
Michael Cinelli

The somatosensory, vestibular, and visual systems contribute to multisensory integration, which facilitates locomotion around obstacles in the environment. The joystick-controlled virtual reality (VR) locomotion interface does not preserve congruent sensory input like real-walking, yet is commonly used in human behaviour research. Our purpose was to determine if collision avoidance behaviours were affected during an aperture crossing task when somatosensory and vestibular input were incongruent, and only vision was accurate. Participants included 36 young adults who completed a closing gap aperture crossing task in VR using real-walking and joystick-controlled locomotion. Participants successfully completed the task using both interfaces. Switch point between passable and impassable apertures was larger for joystick-controlled locomotion compared with real-walking, but time-to-contact (TTC) was lower for real-walking than joystick-controlled locomotion. Increased joystick-controlled locomotion switch point may be attributed to incongruency between visual and non-visual information, causing underestimation of distance travelled towards the aperture. Performance on future VR applications incorporating dynamically changing gaps can be considered successful using joystick-controlled locomotion, while taking into account a potential behaviour difference. Differences in TTC may be explained by the requirement of gait termination in real-walking but not in joystick-controlled locomotion. Future VR studies would benefit from programming acceleration and deceleration into joystick-controlled locomotion interfaces.


Sign in / Sign up

Export Citation Format

Share Document