Thoughts on a Simple Means of Estimating Settlement in Thick Soil Layers in Accordance with Hypothesis B

Author(s):  
Casey J. Shepheard ◽  
Michael G. Williamson
Keyword(s):  
Author(s):  
М. I. Dzhalalova ◽  
P. А. Abdurashidova ◽  
R. М. Zagidova

The coastal strip of the northwestern Caspian is characterized by hydromorphism and salinization processes which depending on the Caspian piled-up water, groundwater salinity, seawater, and salt composition of the underlying rocks. The migrational salts capability in deltoic ecosystem components in dynamic over the main representatives of pasture plants occurring in the Western Caspian and playing an important role in developing the theoretical foundations of a system of measures to increase the productivity of cover crop have studied. Salts migration from soil layers into plants which taking place in synthesis of material-energy and material resource of environment is one of the chains of bio-substrat links. The research results confirm the data that the ash elements stock in the ephemeral-absinthial group varies from 21.5 to 64.5 kg per 1 ha. The organogens prevail in them – 944 kg / ha, K is dominant, then Ca and Mg. The amount of halogens is 7.05 kg / ha, of which Cl portion includes 3.31 and Na – 2.80 kg / ha. In the ephemeral-absinthial group cenoses rather high values of aboveground phytomass are up to 50 centners / ha and the supply of ash elements (halogens 32.14 and organogens 36.18 mg-eq) is much higher compared to their content in soil (7.05 and 6, 31 mg-eq). In roots difference in quantity of organogens and halogens is insignificant – 2.03 and 2.04 mg-eq. We associate such differences with a greater proportion of absinthial in the aboveground phytomass composition


Author(s):  
Svetlana Punanova

This research considered the content of trace elements (TE), including potentially toxic elements (PTE) in shale plays and deposits in various regions of the world. Their comparative analysis was carried out and the highest concentrations of PTE in the shales of some regions were revealed. The author notes that the destruction of organometallic compounds occurs during the development of shale hydrocarbon (HC) using horizontal drilling with hydraulic fracturing – injecting large volumes of chemicals while increasing the temperature. During such destruction processes, PTE can escape into the environment: into groundwater, soil layers, and other objects of economic use, and also deteriorate well equipment. In connection with the noted environmental hazards present during the development of shale HC, this paper proposes to monitor the content of TE in both shale rocks as well as in extracted shale oil in order to mitigate the risks of their release into the environment. In addition, developers and scientists should consider the losses of industrially significant volumes of valuable metals that occur due to the lack of cost-effective technologies for their capture and extraction from naphthides.


Crops & Soils ◽  
2014 ◽  
Vol 47 (2) ◽  
pp. 30-33
Author(s):  
Madeline Fisher
Keyword(s):  

Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 517
Author(s):  
Sunwei Wei ◽  
Zhengyong Zhao ◽  
Qi Yang ◽  
Xiaogang Ding

Soil organic carbon storage (SOCS) estimation is a crucial branch of the atmospheric–vegetation–soil carbon cycle study under the background of global climate change. SOCS research has increased worldwide. The objective of this study is to develop a two-stage approach with good extension capability to estimate SOCS. In the first stage, an artificial neural network (ANN) model is adopted to estimate SOCS based on 255 soil samples with five soil layers (20 cm increments to 100 cm) in Luoding, Guangdong Province, China. This method is compared with three common methods: The soil type method (STM), ordinary kriging (OK), and radial basis function (RBF) interpolation. In the second stage, a linear model is introduced to capture the regional differences and further improve the estimation accuracy of the Luoding-based ANN model when extending it to Xinxing, Guangdong Province. This is done after assessing the generalizability of the above four methods with 120 soil samples from Xinxing. The results for the first stage show that the ANN model has much better estimation accuracy than STM, OK, and RBF, with the average root mean square error (RMSE) of the five soil layers decreasing by 0.62–0.90 kg·m−2, R2 increasing from 0.54 to 0.65, and the mean absolute error decreasing from 0.32 to 0.42. Moreover, the spatial distribution maps produced by the ANN model are more accurate than those of other methods for describing the overall and local SOCS in detail. The results of the second stage indicate that STM, OK, and RBF have poor generalizability (R2 < 0.1), and the R2 value obtained with ANN method is also 43–56% lower for the five soil layers compared with the estimation accuracy achieved in Luoding. However, the R2 of the linear models built with the 20% soil samples from Xinxing are 0.23–0.29 higher for the five soil layers. Thus, the ANN model is an effective method for accurately estimating SOCS on a regional scale with a small number of field samples. The linear model could easily extend the ANN model to outside areas where the ANN model was originally developed with a better level of accuracy.


Sign in / Sign up

Export Citation Format

Share Document