A Method of Feature Vector Modification in Keystroke Dynamics

Author(s):  
Miroslaw Omieljanowicz ◽  
Mateusz Popławski ◽  
Andrzej Omieljanowicz
2012 ◽  
Vol 3 (4) ◽  
pp. 59-76 ◽  
Author(s):  
Paulo H. Pisani ◽  
Ana C. Lorena

A number of current applications require algorithms able to extract a model from one-class data and classify unseen data as self or non-self in a novelty detection scenario, such as spam identification and intrusion detection. In this paper the authors focus on keystroke dynamics, which analyses the user typing rhythm to improve the reliability of user authentication process. However, several different features may be extracted from the typing data, making it difficult to define the feature vector. This problem is even more critical in a novelty detection scenario, when data from the negative class is not available. Based on a keystroke dynamics review, this work evaluated the most used features and evaluated which ones are more significant to differentiate a user from another using keystroke dynamics. In order to perform this evaluation, the authors tested the impact on two benchmark databases applying bio-inspired algorithms based on neural networks and artificial immune systems.


2014 ◽  
Vol 24 (1) ◽  
pp. 137-157 ◽  
Author(s):  
Zahid Syed ◽  
Sean Banerjee ◽  
Bojan Cukic

2018 ◽  
Vol 30 (12) ◽  
pp. 2311
Author(s):  
Zhendong Li ◽  
Yong Zhong ◽  
Dongping Cao

2019 ◽  
Vol 24 (34) ◽  
pp. 4007-4012 ◽  
Author(s):  
Alessandra Lumini ◽  
Loris Nanni

Background: Anatomical Therapeutic Chemical (ATC) classification of unknown compound has raised high significance for both drug development and basic research. The ATC system is a multi-label classification system proposed by the World Health Organization (WHO), which categorizes drugs into classes according to their therapeutic effects and characteristics. This system comprises five levels and includes several classes in each level; the first level includes 14 main overlapping classes. The ATC classification system simultaneously considers anatomical distribution, therapeutic effects, and chemical characteristics, the prediction for an unknown compound of its ATC classes is an essential problem, since such a prediction could be used to deduce not only a compound’s possible active ingredients but also its therapeutic, pharmacological, and chemical properties. Nevertheless, the problem of automatic prediction is very challenging due to the high variability of the samples and the presence of overlapping among classes, resulting in multiple predictions and making machine learning extremely difficult. Methods: In this paper, we propose a multi-label classifier system based on deep learned features to infer the ATC classification. The system is based on a 2D representation of the samples: first a 1D feature vector is obtained extracting information about a compound’s chemical-chemical interaction and its structural and fingerprint similarities to other compounds belonging to the different ATC classes, then the original 1D feature vector is reshaped to obtain a 2D matrix representation of the compound. Finally, a convolutional neural network (CNN) is trained and used as a feature extractor. Two general purpose classifiers designed for multi-label classification are trained using the deep learned features and resulting scores are fused by the average rule. Results: Experimental evaluation based on rigorous cross-validation demonstrates the superior prediction quality of this method compared to other state-of-the-art approaches developed for this problem. Conclusion: Extensive experiments demonstrate that the new predictor, based on CNN, outperforms other existing predictors in the literature in almost all the five metrics used to examine the performance for multi-label systems, particularly in the “absolute true” rate and the “absolute false” rate, the two most significant indexes. Matlab code will be available at https://github.com/LorisNanni.


2019 ◽  
Vol 19 (4) ◽  
pp. 216-223 ◽  
Author(s):  
Tianyi Zhao ◽  
Donghua Wang ◽  
Yang Hu ◽  
Ningyi Zhang ◽  
Tianyi Zang ◽  
...  

Background: More and more scholars are trying to use it as a specific biomarker for Alzheimer’s Disease (AD) and mild cognitive impairment (MCI). Multiple studies have indicated that miRNAs are associated with poor axonal growth and loss of synaptic structures, both of which are early events in AD. The overall loss of miRNA may be associated with aging, increasing the incidence of AD, and may also be involved in the disease through some specific molecular mechanisms. Objective: Identifying Alzheimer’s disease-related miRNA can help us find new drug targets, early diagnosis. Materials and Methods: We used genes as a bridge to connect AD and miRNAs. Firstly, proteinprotein interaction network is used to find more AD-related genes by known AD-related genes. Then, each miRNA’s correlation with these genes is obtained by miRNA-gene interaction. Finally, each miRNA could get a feature vector representing its correlation with AD. Unlike other studies, we do not generate negative samples randomly with using classification method to identify AD-related miRNAs. Here we use a semi-clustering method ‘one-class SVM’. AD-related miRNAs are considered as outliers and our aim is to identify the miRNAs that are similar to known AD-related miRNAs (outliers). Results and Conclusion: We identified 257 novel AD-related miRNAs and compare our method with SVM which is applied by generating negative samples. The AUC of our method is much higher than SVM and we did case studies to prove that our results are reliable.


2020 ◽  
Vol 17 (4) ◽  
pp. 271-286
Author(s):  
Chang Xu ◽  
Limin Jiang ◽  
Zehua Zhang ◽  
Xuyao Yu ◽  
Renhai Chen ◽  
...  

Background: Protein-Protein Interactions (PPIs) play a key role in various biological processes. Many methods have been developed to predict protein-protein interactions and protein interaction networks. However, many existing applications are limited, because of relying on a large number of homology proteins and interaction marks. Methods: In this paper, we propose a novel integrated learning approach (RF-Ada-DF) with the sequence-based feature representation, for identifying protein-protein interactions. Our method firstly constructs a sequence-based feature vector to represent each pair of proteins, viaMultivariate Mutual Information (MMI) and Normalized Moreau-Broto Autocorrelation (NMBAC). Then, we feed the 638- dimentional features into an integrated learning model for judging interaction pairs and non-interaction pairs. Furthermore, this integrated model embeds Random Forest in AdaBoost framework and turns weak classifiers into a single strong classifier. Meanwhile, we also employ double fault detection in order to suppress over-adaptation during the training process. Results: To evaluate the performance of our method, we conduct several comprehensive tests for PPIs prediction. On the H. pyloridataset, our method achieves 88.16% accuracy and 87.68% sensitivity, the accuracy of our method is increased by 0.57%. On the S. cerevisiaedataset, our method achieves 95.77% accuracy and 93.36% sensitivity, the accuracy of our method is increased by 0.76%. On the Humandataset, our method achieves 98.16% accuracy and 96.80% sensitivity, the accuracy of our method is increased by 0.6%. Experiments show that our method achieves better results than other outstanding methods for sequence-based PPIs prediction. The datasets and codes are available at https://github.com/guofei-tju/RF-Ada-DF.git.


Sign in / Sign up

Export Citation Format

Share Document