Re–compression Based JPEG Tamper Detection and Localization Using Deep Neural Network, Eliminating Compression Factor Dependency

Author(s):  
Jamimamul Bakas ◽  
Praneta Rawat ◽  
Kalyan Kokkalla ◽  
Ruchira Naskar
2020 ◽  
Vol 71 (7) ◽  
pp. 828-839
Author(s):  
Thinh Hoang Dinh ◽  
Hieu Le Thi Hong

Autonomous landing of rotary wing type unmanned aerial vehicles is a challenging problem and key to autonomous aerial fleet operation. We propose a method for localizing the UAV around the helipad, that is to estimate the relative position of the helipad with respect to the UAV. This data is highly desirable to design controllers that have robust and consistent control characteristics and can find applications in search – rescue operations. AI-based neural network is set up for helipad detection, followed by optimization by the localization algorithm. The performance of this approach is compared against fiducial marker approach, demonstrating good consensus between two estimations


Author(s):  
David T. Wang ◽  
Brady Williamson ◽  
Thomas Eluvathingal ◽  
Bruce Mahoney ◽  
Jennifer Scheler

Author(s):  
P.L. Nikolaev

This article deals with method of binary classification of images with small text on them Classification is based on the fact that the text can have 2 directions – it can be positioned horizontally and read from left to right or it can be turned 180 degrees so the image must be rotated to read the sign. This type of text can be found on the covers of a variety of books, so in case of recognizing the covers, it is necessary first to determine the direction of the text before we will directly recognize it. The article suggests the development of a deep neural network for determination of the text position in the context of book covers recognizing. The results of training and testing of a convolutional neural network on synthetic data as well as the examples of the network functioning on the real data are presented.


Sign in / Sign up

Export Citation Format

Share Document