Homogeneous Grain Refinement and Ductility Enhancement in AZ31B Magnesium Alloy Using Friction Stir Processing

Author(s):  
Vivek Patel ◽  
Wenya Li ◽  
Quan Wen ◽  
Yu Su ◽  
Na Li
2019 ◽  
Vol 7 (4) ◽  
pp. 605-616 ◽  
Author(s):  
Hamed Seifiyan ◽  
Mahmoud Heydarzadeh Sohi ◽  
Mohammad Ansari ◽  
Donya Ahmadkhaniha ◽  
Mohsen Saremi

2021 ◽  
Author(s):  
Józef Iwaszko ◽  
Krzysztof Kudła

Abstract Friction stir processing (FSP) was used to modify the surface layer of the AZ91 magnesium alloy. The treatment was carried out using a jet cooling nozzle, generating a stream of cold air and enabling intensive cooling of the friction stir processed (FSPed) zone. Single-pass FSP was carried out using a tool rotational speed of 500 rpm and travel speed of 30 mm/min. The treatment was conducted using a truncated cone-shaped tool with a threaded side surface. Strong grain refinement and microstructural changes typical for FSP were found in all the samples. Very fine, equiaxed recrystallized grains dominated in the stirring zone. In the samples modified with the jet cooling nozzle, greater grain refinement was obtained than in the case of naturally-cooled material. The average grain size in the surface part of the stirring zone was 1.4 µm and 9 µm in the samples with air cooling and with natural cooling, respectively. Both the naturally-cooled specimen and air-cooled specimen were characterized by a distinctly higher hardness than the base material. The average Vickers hardness in the stirring zone was 91 HV0.1 in the FSPed sample with the air-cooling system and 85.5 HV0.1 with natural cooling, respectively. The average Vickers hardness of the as-cast alloy was 64 HV0.1. Slightly higher wear resistance of the FSPed samples using a jet cooling nozzle was found in relation to the naturally-cooled sample. Based on the conducted research, high efficiency of the jet cooling nozzle in cooling the modified zone during friction stir processing was found.


2016 ◽  
Vol 61 (3) ◽  
pp. 1555-1560 ◽  
Author(s):  
J. Iwaszko ◽  
K. Kudła ◽  
K. Fila ◽  
M. Strzelecka

Abstract The samples of the as-cast AM60 magnesium alloy were subjected to Friction Stir Processing (FSP). The effect of FSP on the microstructure of AM60 magnesium alloy was analyzed using optical microscopy and X-ray analysis. Besides, the investigation of selected properties, i.e. hardness and resistance to abrasion wear, were carried out. The carried out investigations showed that FSP leads to more homogeneous microstructure and significant grain refinement. The average grain size in the stirred zone (SZ) was about 6-9 μm. in the thermomechanically affected zone (TMAZ), the elongated and deformed grains distributed along flow line were observed. The structural changes caused by FSP lead to an increase in microhardness and wear resistance of AM60 alloy in comparison to their non-treated equivalents. Preliminary results show that friction stir processing is a promising and an effective grain refinement technique.


2018 ◽  
Vol 6 (1) ◽  
pp. 016520 ◽  
Author(s):  
Ali Shamsipur ◽  
Mohammad Sadegh Pezeshki ◽  
Saleh Alaei Behmand ◽  
Milad Rezaei

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3168
Author(s):  
Xicai Luo ◽  
Haolin Liu ◽  
Limei Kang ◽  
Jielin Lin ◽  
Yifei Liu ◽  
...  

The stretch formability behavior of an AZ61 magnesium alloy plate produced by multi-pass friction stir processing (M-FSP) was investigated, with the applied load vs. displacement curves recorded during Erichsen cupping tests at different punching speeds at room temperature. The stretch formability of M-FSP AZ61 magnesium alloy was significantly enhanced, compared with that of its cast counterpart. The highest Erichsen index of 3.7 mm was obtained at a punching speed of 0.1 mm/min. The improved stretch formability was mainly attributed to the grain refinement stemming from the M-FSP and the presence of extension twinning to accommodate deformation during Erichsen cupping testing.


2016 ◽  
Vol 880 ◽  
pp. 25-28 ◽  
Author(s):  
Angga Afrinaldi ◽  
Yoshihiko Uematsu ◽  
Toshifumi Kakiuchi ◽  
Ren Itoh

The microstructure of non-combustible magnesium alloy, AMX602, was modified by friction stir processing (FSP) at the tool rotational speed of 800 rpm and traveling speed of 300 mm/min. In the microstructure of the as-extruded material, some intermetallic compounds (IMCs), Al2Ca and Al-Mn, inhomogeneously distributed in the matrix. The inhomogeneity was dependent on the extruding condition. The largest size of IMCs was a few tens microns. By FSP, large IMCs were broken up, and fine IMCs were uniformly dispersed in the matrix. Furthermore, grain refinement occurred due to dynamic recrystallization.


2011 ◽  
Vol 110-116 ◽  
pp. 606-610 ◽  
Author(s):  
S. Ramesh Babu ◽  
V.S. Senthil Kumar ◽  
V. Balasubramanian ◽  
G. Madhusudhan Reddy

Friction stir processing (FSP) is an emerging surface modification technology for enhancing the sheet metal properties through microstructural refinement at a particular region which might undergo severe plastic deformation. The extruded AZ31B magnesium alloy used in this investigation exhibits very limited ductility accompanied by brittle like behavior at room temperature because of hexagonal packed structure and severe mechanical twinning. Hence, an attempt was made to study the effect of processing parameters such as tool rotational speed and tool traversing speed on tensile properties of friction stir processed AZ31B magnesium alloy. It is found that the friction stir processing of the Magnesium alloy improved the ductility of the material when compared to the base material and also produced an ultrafine equiaxed grain in the processed zone, an ideal condition for the material to exhibit superplasticity.


Sign in / Sign up

Export Citation Format

Share Document