Numerical Simulation of Two-Phase Flow Produced by a Nozzle Taking into Account the Early Crisis of Drag for Droplets and Interphase Mass Transfer

Author(s):  
Nikolay N. Simakov
1969 ◽  
Vol 9 (03) ◽  
pp. 323-337 ◽  
Author(s):  
W.E. Culham ◽  
S.M. Farouq Ali ◽  
C.D. Stahl

Abstract One- and two-dimensional mathematical models have been developed that simulate transient, two-phase flow of hydrocarbon mixtures in porous media in a manner that accounts for interphase mass transfer. Numerical simulations of one-dimensional depletion-drive experiments using a two-component hydrocarbon fluid were used to establish the validity of the mathematical models. In addition, the experimental and numerical data were used to demonstrate that production rate had a relatively insignificant effect on the recovery of individual hydrocarbon components from the experimental system, and that attainment of equilibrium between phases is possible for a wide range of liquid and vapor velocities in reservoirs containing light hydrocarbon fluids. Results of some two-dimensional numerical simulations are also presented. Introduction This study was undertaken to develop a mathematical model that would simulate transient, two-phase flow of hydrocarbon mixtures in porous media under conditions that result in interphase mass transfer and to test the validity of the assumptions used to set up the model. In addition, the study was designed to determine if production rate influences the recovery of individual hydrocarbon components from reservoirs producing by depletion drive. Two-phase flow in porous media, with interchange of components between the two phases, is important in many petroleum recovery processes. Studies conducted within the last 3 years have outlined methods of solving multiphase flow problems incorporating mass transfer. Some of these studies have also indicated the importance of accounting for mass transfer under various producing conditions. An earlier works first demonstrated the importance of combining relative permeability data with equilibrium ratios in compositional balance methods. The mathematical model presented in this paper is formulated so that a phase behavior package, as described in previous papers, is not required as an integral part of the routine employed to solve for the primary dependent variables. The finite difference formulation is designed so that all these variables can be solved for simultaneously. This is accomplished by utilizing one basic set of equations. These innovations, which are in contrast to other models but are similar in some respects to the approach used by Taylor, render the total problem computationally simpler than any of the previously referenced formulations. The mathematical model was developed by combining Darcy's law with a continuity equation for each hydrocarbon component. The principal assumptions invoked in the formulation were that capillary forces and diffusional effects are negligible, and that thermodynamic equilibrium exists in the reservoir at all times. No assumption as to the type of vaporization process was made in formulating this model. Experimental data were required to complete this study. These were generated by conducting several depletion drive experiments. The experimental apparatus consisted of a sandstone core enclosed in a pressurized casing. The apparatus was designed in such a manner that the core could be charged with a liquid hydrocarbon mixture and depleted at different production rates. The experimental tests were designed to determine the effect of production rate on component recovery. SPEJ P. 323


AIChE Journal ◽  
1991 ◽  
Vol 37 (11) ◽  
pp. 1625-1633 ◽  
Author(s):  
Craig F. Novak ◽  
Larry W. Lake ◽  
Robert S. Schechter

Fluids ◽  
2021 ◽  
Vol 6 (6) ◽  
pp. 226
Author(s):  
Rashal Abed ◽  
Mohamed M. Hussein ◽  
Wael H. Ahmed ◽  
Sherif Abdou

Airlift pumps can be used in the aquaculture industry to provide aeration while concurrently moving water utilizing the dynamics of two-phase flow in the pump riser. The oxygen mass transfer that occurs from the injected compressed air to the water in the aquaculture systems can be experimentally investigated to determine the pump aeration capabilities. The objective of this study is to evaluate the effects of various airflow rates as well as the injection methods on the oxygen transfer rate within a dual injector airlift pump system. Experiments were conducted using an airlift pump connected to a vertical pump riser within a recirculating system. Both two-phase flow patterns and the void fraction measurements were used to evaluate the dissolved oxygen mass transfer mechanism through the airlift pump. A dissolved oxygen (DO) sensor was used to determine the DO levels within the airlift pumping system at different operating conditions required by the pump. Flow visualization imaging and particle image velocimetry (PIV) measurements were performed in order to better understand the effects of the two-phase flow patterns on the aeration performance. It was found that the radial injection method reached the saturation point faster at lower airflow rates, whereas the axial method performed better as the airflow rates were increased. The standard oxygen transfer rate (SOTR) and standard aeration efficiency (SAE) were calculated and were found to strongly depend on the injection method as well as the two-phase flow patterns in the pump riser.


Sign in / Sign up

Export Citation Format

Share Document