Trajectory Planning for Aerial Vehicles in the Area Coverage Problem with Nearby Obstacles

Author(s):  
Jakub Marek ◽  
Petr Váňa ◽  
Jan Faigl
2020 ◽  
pp. 1580-1600
Author(s):  
Subhendu Kumar Pani

A wireless sensor network may contain hundreds or even tens of thousands of inexpensive sensor devices that can communicate with their neighbors within a limited radio range. By relaying information on each other, they transmit signals to a command post anywhere within the network. Worldwide market for wireless sensor networks is rapidly growing due to a huge variety of applications it offers. In this chapter, we discuss application of computational intelligence techniques in wireless sensor networks on the coverage problem in general and area coverage in particular. After providing different types of coverage encountered in WSN, we present a possible classification of coverage algorithms. Then we dwell on area coverage which is widely studied due to its importance. We provide a survey of literature on area coverage and give an account of its state-of-the art and research directions.


Author(s):  
Subhendu Kumar Pani

A wireless sensor network may contain hundreds or even tens of thousands of inexpensive sensor devices that can communicate with their neighbors within a limited radio range. By relaying information on each other, they transmit signals to a command post anywhere within the network. Worldwide market for wireless sensor networks is rapidly growing due to a huge variety of applications it offers. In this chapter, we discuss application of computational intelligence techniques in wireless sensor networks on the coverage problem in general and area coverage in particular. After providing different types of coverage encountered in WSN, we present a possible classification of coverage algorithms. Then we dwell on area coverage which is widely studied due to its importance. We provide a survey of literature on area coverage and give an account of its state-of-the art and research directions.


Author(s):  
Jun Tang ◽  
Jiayi Sun ◽  
Cong Lu ◽  
Songyang Lao

Multi-unmanned aerial vehicle trajectory planning is one of the most complex global optimum problems in multi-unmanned aerial vehicle coordinated control. Results of recent research works on trajectory planning reveal persisting theoretical and practical problems. To mitigate them, this paper proposes a novel optimized artificial potential field algorithm for multi-unmanned aerial vehicle operations in a three-dimensional dynamic space. For all purposes, this study considers the unmanned aerial vehicles and obstacles as spheres and cylinders with negative electricity, respectively, while the targets are considered spheres with positive electricity. However, the conventional artificial potential field algorithm is restricted to a single unmanned aerial vehicle trajectory planning in two-dimensional space and usually fails to ensure collision avoidance. To deal with this challenge, we propose a method with a distance factor and jump strategy to resolve common problems such as unreachable targets and ensure that the unmanned aerial vehicle does not collide into the obstacles. The method takes companion unmanned aerial vehicles as the dynamic obstacles to realize collaborative trajectory planning. Besides, the method solves jitter problems using the dynamic step adjustment method and climb strategy. It is validated in quantitative test simulation models and reasonable results are generated for a three-dimensional simulated urban environment.


Sign in / Sign up

Export Citation Format

Share Document