A Microscopic Description of Spin Dynamics in Magnetic Multilayer Nanostructures

Author(s):  
A. M. Korostil ◽  
M. M. Krupa
2008 ◽  
Vol 44 (4-5) ◽  
pp. 431-435
Author(s):  
Min Ren ◽  
Lei Zhang ◽  
Jiuning Hu ◽  
Ning Deng ◽  
Hao Dong ◽  
...  

Author(s):  
A.E.M. De Veirman ◽  
F.J.G. Hakkens ◽  
W.M.J. Coene ◽  
F.J.A. den Broeder

There is currently great interest in magnetic multilayer (ML) thin films (see e.g.), because they display some interesting magnetic properties. Co/Pd and Co/Au ML systems exhibit perpendicular magnetic anisotropy below certain Co layer thicknesses, which makes them candidates for applications in the field of magneto-optical recording. It has been found that the magnetic anisotropy of a particular system strongly depends on the preparation method (vapour deposition, sputtering, ion beam sputtering) as well as on the substrate, underlayer and deposition temperature. In order to get a better understanding of the correlation between microstructure and properties a thorough cross-sectional transmission electron microscopy (XTEM) study of vapour deposited Co/Pd and Co/Au (111) MLs was undertaken (for more detailed results see ref.).The Co/Pd films (with fixed Pd thickness of 2.2 nm) were deposited on mica substrates at substrate temperatures Ts of 20°C and 200°C, after prior deposition of a 100 nm Pd underlayer at 450°C.


2020 ◽  
Vol 96 (3s) ◽  
pp. 420-423
Author(s):  
Д.А. Жуков ◽  
В.В. Амеличев ◽  
Д.В. Костюк ◽  
А.И. Крикунов ◽  
Д.В. Васильев ◽  
...  

Представлены результаты экспериментальных исследований магнитострикционных и магниторезистивных свойств тонкопленочных многослойных наноструктур Ta/FeNiCo/CoFe/Ta и Ta/FeNiCo/CoFeВ/Ta на окисленных кремниевых подложках диаметром 100 мм. Экспериментально установлена зависимость величины анизотропного магниторезистивного эффекта от величины механических деформаций в экспериментальных образцах наноструктур. The paper presents the results of experimental studies of the magnetostriction and magnetoresistive properties of thin-film multilayer nanostructures Ta/FeNiCo/CoFe/Ta and Ta/FeNiCo/CoFeB/Ta on oxidized silicon substrates with a diameter of 100 mm. The dependence of the magnitude of the anisotropic magnetoresistive effect on the magnitude of mechanical strains in experimental samples of nanostructures has been experimentally established.


Author(s):  
Olle Eriksson ◽  
Anders Bergman ◽  
Lars Bergqvist ◽  
Johan Hellsvik

In the previous chapters we described the basic principles of density functional theory, gave examples of how accurate it is to describe static magnetic properties in general, and derived from this basis the master equation for atomistic spin-dynamics; the SLL (or SLLG) equation. However, one term was not described in these chapters, namely the damping parameter. This parameter is a crucial one in the SLL (or SLLG) equation, since it allows for energy and angular momentum to dissipate from the simulation cell. The damping parameter can be evaluated from density functional theory, and the Kohn-Sham equation, and it is possible to determine its value experimentally. This chapter covers in detail the theoretical aspects of how to calculate theoretically the damping parameter. Chapter 8 is focused, among other things, on the experimental detection of the damping, using ferromagnetic resonance.


Author(s):  
M. M. Glazov

In this chapter, some prospects in the field of electron and nuclear spin dynamics are outlined. Particular emphasis is put ona situation where the hyperfine interaction is so strong that it leads to a qualitative rearrangement of the energy spectrum resulting in the coherent excitation transfer between the electron and nucleus. The strong coupling between the spin of the charge carrier and of the nucleus is realized, for example in the case of deep impurity centers in semiconductors or in isotopically purified systems. We also discuss the effect of the nuclear spin polaron, that is ordered state, formation at low enough temperatures of nuclear spins, where the orientation of the carrier spin results in alignment of the spins of nucleus interacting with the electron or hole.


Author(s):  
M. M. Glazov

The discussion of the electron spin decoherence and relaxation phenomena via the hyperfine interaction with host lattice spins is presented here. The spin relaxation processes processes limit the conservation time of spin states as well as the response time of the spin system to external perturbations. The central spin model, where the spin of charge carrier interacts with the bath of nuclear spins, is formulated. We also present different methods to calculate the spin dynamics within this model. Simple but physically transparent semiclassical treatment where the nuclear spins are considered as largely static classical magnetic moments is followed by more advanced quantum mechanical approach where the feedback of electron spin dynamics on the nuclei is taken into account. The chapter concludes with an overview of experimental data and its comparison with model calculations.


Sign in / Sign up

Export Citation Format

Share Document