In-Liquid Laser Nanomachining by Photonic Nanojet in Optical Tweezers Configuration

Author(s):  
Reza Aulia Rahman ◽  
Tsutomu Uenohara ◽  
Yasuhiro Mizutani ◽  
Yasuhiro Takaya
2018 ◽  
Vol 530 (9) ◽  
pp. 1800129 ◽  
Author(s):  
Aleksandr Kovrov ◽  
Andrey Novitsky ◽  
Alina Karabchevsky ◽  
Alexander S. Shalin

Author(s):  
Reza Aulia Rahman ◽  
Tsutomu Uenohara ◽  
Yasuhiro Mizutani ◽  
Yasuhiro Takaya

Abstract Direct laser machining in sub-micron scale patterning at a surface of material remains a challenging task though the laser machining has been widely applied in various application. A photonic nanojet becomes a promising way to solve the problem by involving near-field focusing of light waves below the surface of a dielectric microsphere to fabricate pattern in micro- and nanometer size. By generating laser power to the microsphere and controlling the resulting photonic nanojet intensity distribution and position related to the workpiece, intended ablation size on the material could be controlled at the sub-micrometer scale. In this study, liquid is proposed as photonic nanojet machining medium due to several advantages that liquid offer during machining process. Laser trapping system is then introduced to the optical system to control the position of the microsphere during machining process. An in-liquid nanomachining by generating photonic nanojet in laser trapping configuration is a subject to study with the effect on the resulting ablation and viability of machining process from a set of parameters are investigated numerically using finite-difference time-domain (FDTD) technique. According to the findings of this study, nanometer scale, flexible, and fast novel laser nanomachining could be realized by combining photonic nanojet machining and laser trapping technique.


2004 ◽  
Vol 51 (3) ◽  
pp. 409-414 ◽  
Author(s):  
P. Jordan ◽  
J. Leach ◽  
M. J. Padgett ◽  
J. Cooper ◽  
G. Sinclair
Keyword(s):  

Author(s):  
Sandip Tiwari

This chapter explores electromagnetic-matter interactions from photon to extinction length scales, i.e., nanometer of X-ray and above. Starting with Casimir-Polder effect to understand interactions of metals and dielectrics at near-atomic distance scale, it stretches to larger wavelengths to explore optomechanics and its ability for energy exchange and signal transduction between PHz and GHz. This range is explored with near-quantum sensitivity limits. The chapter also develops the understanding phononic bandgaps, and for photons, it explores the use of energetic coupling for useful devices such as optical tweezers, confocal microscopes and atomic clocks. It also explores miniature accelerators as a frontier area in accelerator physics. Plasmonics—the electromagnetic interaction with electron charge cloud—is explored for propagating and confined conditions together with the approaches’ possible uses. Optoelectronic energy conversion is analyzed in organic and inorganic systems, with their underlying interaction physics through solar cells and its thermodynamic limit, and quantum cascade lasers.


2021 ◽  
Vol 2 (1) ◽  
pp. 100283
Author(s):  
Pedro Pompeu ◽  
Pedro S. Lourenço ◽  
Diney S. Ether ◽  
Juliana Soares ◽  
Jefte Farias ◽  
...  

2021 ◽  
pp. 100106
Author(s):  
Yongjie Jia ◽  
Renxian Li ◽  
Wenze Zhuang ◽  
Jiarui Liang

ACS Photonics ◽  
2021 ◽  
Author(s):  
Lachlan W. Russell ◽  
Eloise C. Dossetor ◽  
Alexander A. Wood ◽  
David A. Simpson ◽  
Peter J. Reece

ChemPhysChem ◽  
2021 ◽  
Vol 22 (14) ◽  
pp. 1408-1408
Author(s):  
Joshua D. Kolbow ◽  
Nathan C. Lindquist ◽  
Christopher T. Ertsgaard ◽  
Daehan Yoo ◽  
Sang‐Hyun Oh

Sign in / Sign up

Export Citation Format

Share Document