In-Liquid Laser Nanomachining by Photonic Nanojet in Laser Trapping System

Author(s):  
Reza Aulia Rahman ◽  
Tsutomu Uenohara ◽  
Yasuhiro Mizutani ◽  
Yasuhiro Takaya

Abstract Direct laser machining in sub-micron scale patterning at a surface of material remains a challenging task though the laser machining has been widely applied in various application. A photonic nanojet becomes a promising way to solve the problem by involving near-field focusing of light waves below the surface of a dielectric microsphere to fabricate pattern in micro- and nanometer size. By generating laser power to the microsphere and controlling the resulting photonic nanojet intensity distribution and position related to the workpiece, intended ablation size on the material could be controlled at the sub-micrometer scale. In this study, liquid is proposed as photonic nanojet machining medium due to several advantages that liquid offer during machining process. Laser trapping system is then introduced to the optical system to control the position of the microsphere during machining process. An in-liquid nanomachining by generating photonic nanojet in laser trapping configuration is a subject to study with the effect on the resulting ablation and viability of machining process from a set of parameters are investigated numerically using finite-difference time-domain (FDTD) technique. According to the findings of this study, nanometer scale, flexible, and fast novel laser nanomachining could be realized by combining photonic nanojet machining and laser trapping technique.

2021 ◽  
Vol 15 (4) ◽  
pp. 492-502
Author(s):  
Reza Aulia Rahman ◽  
Tsutomu Uenohara ◽  
Yasuhiro Mizutani ◽  
Yasuhiro Takaya ◽  
◽  
...  

In the recent period of the miniaturization of devices, there has been a high demand for high-resolution, flexible, and fast machining technique to accommodate high production volumes. Conventional laser machining with a focused laser beam has been widely used to fabricate small devices for various applications. However, this process is limited by the optical diffraction limit of the laser beam. Therefore, the photonic nanojet (PNJ) machining technique is a promising solution to tackle this problem. This technique is based on the near-field focusing of light waves with a high-energy laser power below the surface of an irradiated dielectric microsphere. We introduce water as a medium in the proposed PNJ machining technique so that the pattern could be fabricated more efficiently, faster, and with better quality. We evaluate the characteristics of the generated PNJ in water; further, we estimate the PNJ machining results numerically using the FDTD method and confirm them experimentally. To the best of our knowledge, this is the first ever to do so. All the holes obtained from the PNJ machining experiment were consistently in the sub-micrometer order and below the optical diffraction limit value of the constructed setup.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Yoel Sebbag ◽  
Eliran Talker ◽  
Alex Naiman ◽  
Yefim Barash ◽  
Uriel Levy

AbstractRecently, there has been growing interest in the miniaturization and integration of atomic-based quantum technologies. In addition to the obvious advantages brought by such integration in facilitating mass production, reducing the footprint, and reducing the cost, the flexibility offered by on-chip integration enables the development of new concepts and capabilities. In particular, recent advanced techniques based on computer-assisted optimization algorithms enable the development of newly engineered photonic structures with unconventional functionalities. Taking this concept further, we hereby demonstrate the design, fabrication, and experimental characterization of an integrated nanophotonic-atomic chip magnetometer based on alkali vapor with a micrometer-scale spatial resolution and a magnetic sensitivity of 700 pT/√Hz. The presented platform paves the way for future applications using integrated photonic–atomic chips, including high-spatial-resolution magnetometry, near-field vectorial imaging, magnetically induced switching, and optical isolation.


2014 ◽  
Vol 602-605 ◽  
pp. 3359-3362
Author(s):  
Chun Li Zhu ◽  
Jing Li

In this paper, output near fields of nanowires with different optical and structure configurations are calculated by using the three-dimensional finite-difference time-domain (3D FDTD) method. Then a nanowire with suitable near field distribution is chosen as the probe for scanning dielectric and metal nanogratings. Scanning results show that the resolution in near-field imaging of dielectric nanogratings can be as low as 80nm, and the imaging results are greatly influenced by the polarization direction of the incident light. Compared with dielectric nanogratings, metal nanogratings have significantly enhanced resolutions when the arrangement of gratings is perpendicular to the polarization direction of the incident light due to the enhancement effect of the localized surface plasmons (SPs). Results presented here could offer valuable references for practical applications in near-field imaging with nanowires as optical probes.


2012 ◽  
Vol 516 ◽  
pp. 90-95
Author(s):  
Bing Hui Liu ◽  
Li Jun Yang ◽  
Yang Wang

By employing a generalization of the conservation law for momentum using the finite difference time domain (FDTD) method, the feasibility of using a near-field optical fibre probe to create near-field optical trapping is investigated. Numerical results indicate that the scheme is able to trap nanoparticles with diameters of tens of nanometres in a circular shape with lower laser intensity. Using the built system with a tapered metal-coated fibre probe, 120 nm polystyrene particles are trapped in a multi-circular shape with a minimum size of 400 nm. They are at a resolution of λ/7 (λ: laser wavelength) and d (d: tip diameter of fiber probe), respectively.


Author(s):  
Norman Hodgson ◽  
Albrecht Steinkopff ◽  
Sebastian Heming ◽  
Hortense Allegre ◽  
Hatim Haloui ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Dharmendra Mani ◽  
Suresh Sivan ◽  
Hafiz Muhammad Ali ◽  
Udaya Kumar Ganesan

Improving the performance of pool boiling with critical heat flux of pool boiling and enhancing the coefficient of heat transfer through surface modification technique have gained a lot of attention. These surface modifications can be done at different scales using various techniques. However, along with the performance improvement, the durability and stability of the surface modification are very crucial. Laser machining is an attractive option in this aspect and is gaining a lot of attention. In the present experimentation research work, pool boiling attributed performance of copper-grooved surfaces obtained through picosecond laser machining method is investigated. The performance of the modified surfaces was compared with the plain surface serving as reference. In this, three square grooved patterns with the same pitch (100 μm) and width (100 μm) but different depths (30, 70, and 100 μm) were investigated. Different depths were obtained by varying the scanning speed of the laser machine. In addition to the microchannel effect, the grain structuring during the laser machining process creates additional nucleation sites which has proven its effectiveness in improving the pool boiling performance. In all aspects, the pool boiling performance of the grooved laser-textured surface has showed increased surface characterisation as compared with the surface of copper.


Sign in / Sign up

Export Citation Format

Share Document