Genetic Association from RFLPs to Millions of Variant Markers: Unravelling the Genetic Complexity of Diseases

Author(s):  
Babajan Banaganapalli ◽  
Noor Ahmad Shaik ◽  
Jumana Y. Al-Aama ◽  
Ramu Elango
2009 ◽  
Vol 42 (05) ◽  
Author(s):  
M Boxleitner ◽  
I Giegling ◽  
AM Hartmann ◽  
J Genius ◽  
A Ruppert ◽  
...  

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Kevin M. Anderson ◽  
Meghan A. Collins ◽  
Rowena Chin ◽  
Tian Ge ◽  
Monica D. Rosenberg ◽  
...  

Genetics ◽  
1997 ◽  
Vol 147 (3) ◽  
pp. 1213-1224
Author(s):  
Jean-Philippe Charles ◽  
Carol Chihara ◽  
Shamim Nejad ◽  
Lynn M Riddiford

A 36-kb genomic DNA segment of the Drosophila melanogaster genome containing 12 clustered cuticle genes has been mapped and partially sequenced. The cluster maps at 65A 5-6 on the left arm of the third chromosome, in agreement with the previously determined location of a putative cluster encompassing the genes for the third instar larval cuticle proteins LCP5, LCP6 and LCP8. This cluster is the largest cuticle gene cluster discovered to date and shows a number of surprising features that explain in part the genetic complexity of the LCP5, LCP6 and LCP8 loci. The genes encoding LCP5 and LCP8 are multiple copy genes and the presence of extensive similarity in their coding regions gives the first evidence for gene conversion in cuticle genes. In addition, five genes in the cluster are intronless. Four of these five have arisen by retroposition. The other genes in the cluster have a single intron located at an unusual location for insect cuticle genes.


Genetics ◽  
2000 ◽  
Vol 156 (3) ◽  
pp. 1249-1257
Author(s):  
Ilya Ruvinsky ◽  
Lee M Silver ◽  
Jeremy J Gibson-Brown

Abstract The duplication of preexisting genes has played a major role in evolution. To understand the evolution of genetic complexity it is important to reconstruct the phylogenetic history of the genome. A widely held view suggests that the vertebrate genome evolved via two successive rounds of whole-genome duplication. To test this model we have isolated seven new T-box genes from the primitive chordate amphioxus. We find that each amphioxus gene generally corresponds to two or three vertebrate counterparts. A phylogenetic analysis of these genes supports the idea that a single whole-genome duplication took place early in vertebrate evolution, but cannot exclude the possibility that a second duplication later took place. The origin of additional paralogs evident in this and other gene families could be the result of subsequent, smaller-scale chromosomal duplications. Our findings highlight the importance of amphioxus as a key organism for understanding evolution of the vertebrate genome.


Sign in / Sign up

Export Citation Format

Share Document