scholarly journals Stem Cell-Based and Tissue Engineering Approaches for Skeletal Muscle Repair

2020 ◽  
pp. 1-62
Author(s):  
Seraina A. Domenig ◽  
Andrew S. Palmer ◽  
Ori Bar-Nur
Author(s):  
Seraina A. Domenig ◽  
Andrew S. Palmer ◽  
Ori Bar-Nur

2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Yuji Ogura ◽  
Sajedah M. Hindi ◽  
Shuichi Sato ◽  
Guangyan Xiong ◽  
Shizuo Akira ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sean M. Buchanan ◽  
Feodor D. Price ◽  
Alessandra Castiglioni ◽  
Amanda Wagner Gee ◽  
Joel Schneider ◽  
...  

Abstract Satellite cells are the canonical muscle stem cells that regenerate damaged skeletal muscle. Loss of function of these cells has been linked to reduced muscle repair capacity and compromised muscle health in acute muscle injury and congenital neuromuscular diseases. To identify new pathways that can prevent loss of skeletal muscle function or enhance regenerative potential, we established an imaging-based screen capable of identifying small molecules that promote the expansion of freshly isolated satellite cells. We found several classes of receptor tyrosine kinase (RTK) inhibitors that increased freshly isolated satellite cell numbers in vitro. Further exploration of one of these compounds, the RTK inhibitor CEP-701 (also known as lestaurtinib), revealed potent activity on mouse satellite cells both in vitro and in vivo. This expansion potential was not seen upon exposure of proliferating committed myoblasts or non-myogenic fibroblasts to CEP-701. When delivered subcutaneously to acutely injured animals, CEP-701 increased both the total number of satellite cells and the rate of muscle repair, as revealed by an increased cross-sectional area of regenerating fibers. Moreover, freshly isolated satellite cells expanded ex vivo in the presence of CEP-701 displayed enhanced muscle engraftment potential upon in vivo transplantation. We provide compelling evidence that certain RTKs, and in particular RET, regulate satellite cell expansion during muscle regeneration. This study demonstrates the power of small molecule screens of even rare adult stem cell populations for identifying stem cell-targeting compounds with therapeutic potential.


2019 ◽  
Vol 10 ◽  
pp. 204173141988710 ◽  
Author(s):  
Di Zhang ◽  
Kai Yan ◽  
Jing Zhou ◽  
Tianpeng Xu ◽  
Menglei Xu ◽  
...  

Stem cell–based tissue engineering therapy is the most promising method for treating volumetric muscle loss. Human amniotic mesenchymal cells possess characteristics similar to those of embryonic stem cells. In this study, we verified the stem cell characteristics of human amniotic mesenchymal cells by the flow cytometry analysis, and osteogenic and adipogenic differentiation. Through induction with the DNA demethylating agent 5-azacytidine, human amniotic mesenchymal cells can undergo myogenic differentiation and express skeletal muscle cell–specific markers such as desmin and MyoD. The Wnt/β-catenin signaling pathway also plays an important role. After 5-azacytidine-induced human amniotic mesenchymal cells were implanted into rat tibialis anterior muscle with volumetric muscle loss, we observed increased angiogenesis and improved local tissue repair. We believe that human amniotic mesenchymal cells can serve as a potential source of cells for skeletal muscle tissue engineering.


Author(s):  
Claudia Fuoco ◽  
Lucia Lisa Petrilli ◽  
Stefano Cannata ◽  
Cesare Gargioli

Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 744
Author(s):  
Matthew Borok ◽  
Nathalie Didier ◽  
Francesca Gattazzo ◽  
Teoman Ozturk ◽  
Aurelien Corneau ◽  
...  

Background: Skeletal muscle is one of the only mammalian tissues capable of rapid and efficient regeneration after trauma or in pathological conditions. Skeletal muscle regeneration is driven by the muscle satellite cells, the stem cell population in interaction with their niche. Upon injury, muscle fibers undergo necrosis and muscle stem cells activate, proliferate and fuse to form new myofibers. In addition to myogenic cell populations, interaction with other cell types such as inflammatory cells, mesenchymal (fibroadipogenic progenitors—FAPs, pericytes) and vascular (endothelial) lineages are important for efficient muscle repair. While the role of the distinct populations involved in skeletal muscle regeneration is well characterized, the quantitative changes in the muscle stem cell and niche during the regeneration process remain poorly characterized. Methods: We have used mass cytometry to follow the main muscle cell types (muscle stem cells, vascular, mesenchymal and immune cell lineages) during early activation and over the course of muscle regeneration at D0, D2, D5 and D7 compared with uninjured muscles. Results: Early activation induces a number of rapid changes in the proteome of multiple cell types. Following the induction of damage, we observe a drastic loss of myogenic, vascular and mesenchymal cell lineages while immune cells invade the damaged tissue to clear debris and promote muscle repair. Immune cells constitute up to 80% of the mononuclear cells 5 days post-injury. We show that muscle stem cells are quickly activated in order to form new myofibers and reconstitute the quiescent muscle stem cell pool. In addition, our study provides a quantitative analysis of the various myogenic populations during muscle repair. Conclusions: We have developed a mass cytometry panel to investigate the dynamic nature of muscle regeneration at a single-cell level. Using our panel, we have identified early changes in the proteome of stressed satellite and niche cells. We have also quantified changes in the major cell types of skeletal muscle during regeneration and analyzed myogenic transcription factor expression in satellite cells throughout this process. Our results highlight the progressive dynamic shifts in cell populations and the distinct states of muscle stem cells adopted during skeletal muscle regeneration. Our findings give a deeper understanding of the cellular and molecular aspects of muscle regeneration.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Robert N. Judson ◽  
Fabio M. V. Rossi

2015 ◽  
Vol 23 (6) ◽  
pp. 1003-1021 ◽  
Author(s):  
Uxía Gurriarán-Rodríguez ◽  
Icía Santos-Zas ◽  
Jessica González-Sánchez ◽  
Daniel Beiroa ◽  
Viviana Moresi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document