Variant Calling Using Whole Genome Resequencing and Sequence Capture for Population and Evolutionary Genomic Inferences in Norway Spruce (Picea Abies)

Author(s):  
Carolina Bernhardsson ◽  
Xi Wang ◽  
Helena Eklöf ◽  
Pär K. Ingvarsson
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Luciano Calderón ◽  
Nuria Mauri ◽  
Claudio Muñoz ◽  
Pablo Carbonell-Bejerano ◽  
Laura Bree ◽  
...  

AbstractGrapevine cultivars are clonally propagated to preserve their varietal attributes. However, genetic variations accumulate due to the occurrence of somatic mutations. This process is anthropically influenced through plant transportation, clonal propagation and selection. Malbec is a cultivar that is well-appreciated for the elaboration of red wine. It originated in Southwestern France and was introduced in Argentina during the 1850s. In order to study the clonal genetic diversity of Malbec grapevines, we generated whole-genome resequencing data for four accessions with different clonal propagation records. A stringent variant calling procedure was established to identify reliable polymorphisms among the analyzed accessions. The latter procedure retrieved 941 single nucleotide variants (SNVs). A reduced set of the detected SNVs was corroborated through Sanger sequencing, and employed to custom-design a genotyping experiment. We successfully genotyped 214 Malbec accessions using 41 SNVs, and identified 14 genotypes that clustered in two genetically divergent clonal lineages. These lineages were associated with the time span of clonal propagation of the analyzed accessions in Argentina and Europe. Our results show the usefulness of this approach for the study of the scarce intra-cultivar genetic diversity in grapevines. We also provide evidence on how human actions might have driven the accumulation of different somatic mutations, ultimately shaping the Malbec genetic diversity pattern.


2018 ◽  
Author(s):  
Amaryllis Vidalis ◽  
Douglas G. Scofield ◽  
Leandro G. Neves ◽  
Carolina Bernhardsson ◽  
María Rosario García-Gil ◽  
...  

AbstractMassively parallel sequencing has revolutionized the field of genetics by providing comparatively high-resolution insights into whole genomes for large number of species so far. However, whole-genome resequencing of many conspecific individuals remains cost-prohibitive for most species. This is especially true for species with very large genomes with extensive genomic redundancy, such as the genomes of coniferous trees. The genome assembly for the conifer Norway spruce (Picea abies) was the first published draft genome assembly for any gymnosperm. Our goal was to develop a dense set of genome-wide SNP markers for Norway spruce to be used for assembly improvement and population studies. From 80,000 initial probe candidates, we developed two partially-overlapping sets of sequence capture probes: one developed against 56 haploid megagametophytes, to aid assembly improvement; and the other developed against 6 diploid needle samples, to aid population studies. We focused probe development within genes, as delineated via the annotation of ~67,000 gene models accompanying P. abies assembly version 1.0. The 31,277 probes developed against megagametophytes covered 19,268 gene models (mean 1.62 probes/model). The 40,018 probes developed against diploid tissue covered 26,219 gene modules (mean 1.53 probes/model). Analysis of read coverage and variant quality around probe sites showed that initial alignment of captured reads should be done against the whole genome sequence, rather than a subset of probe-containing scaffolds, to overcome occasional capture of sequences outside of designed regions. All three probe sets, anchored to the P. abies 1.0 genome assembly and annotation, are available for download.


2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Lei-Lei Li ◽  
Shi-Ke Ma ◽  
Wei Peng ◽  
You-Gui Fang ◽  
Hai-Rui Duo ◽  
...  

BMC Genomics ◽  
2011 ◽  
Vol 12 (1) ◽  
Author(s):  
Paul Stothard ◽  
Jung-Woo Choi ◽  
Urmila Basu ◽  
Jennifer M Sumner-Thomson ◽  
Yan Meng ◽  
...  

2021 ◽  
Author(s):  
Huang Li ◽  
Xiao Hu ◽  
John T. Lovell ◽  
Paul P. Grabowski ◽  
Sujan Mamidi ◽  
...  

Life ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 959
Author(s):  
Alexander Igoshin ◽  
Nikolay Yudin ◽  
Ruslan Aitnazarov ◽  
Andrey A. Yurchenko ◽  
Denis M. Larkin

Despite the economic importance of creating cold resilient cattle breeds, our knowledge of the genetic basis of adaptation to cold environments in cattle is still scarce compared to information on other economically important traits. Herein, using whole-genome resequencing of animals showing contrasting phenotypes on temperature maintenance under acute cold stress combined with the existing SNP (single nucleotide polymorphism) functional annotations, we report chromosomal regions and candidate SNPs controlling body temperature in the Siberian cattle populations. The SNP ranking procedure based on regional FST calculations, functional annotations, and the allele frequency difference between cold-tolerant and cold-sensitive groups of animals pointed to multiple candidate genes. Among these, GRIA4, COX17, MAATS1, UPK1B, IFNGR1, DDX23, PPT1, THBS1, CCL5, ATF1, PLA1A, PRKAG1, and NR1I2 were previously related to thermal adaptations in cattle. Other genes, for example KMT2D and SNRPA1, are known to be related to thermogenesis in mice and cold adaptation in common carp, respectively. This work could be useful for cattle breeding strategies in countries with harsh climates, including the Russian Federation.


Sign in / Sign up

Export Citation Format

Share Document