Induced Riverbank Filtration (IRBF) for Managed Artificial Groundwater Recharge (MAR) in Slovenia

Author(s):  
Irena Kopač ◽  
Matevž Vremec
2012 ◽  
Vol 66 (1) ◽  
pp. 138-144 ◽  
Author(s):  
Florian R. Storck ◽  
Carsten K. Schmidt ◽  
Richard Wülser ◽  
Heinz-Jürgen Brauch

Drinking water is often produced from surface water by riverbank filtration (RBF) or artificial groundwater recharge (AGR). In this study, an AGR system was exemplarily investigated and results were compared with those of RBF systems, in which the effects of redox milieu, temperature and surface water discharge on the cleaning efficiency were evaluated. Besides bulk parameters such as DOC (dissolved organic carbon), organic trace pollutants including iodinated X-ray contrast media, personal care products, complexing agents, and pharmaceuticals were investigated. At all studied sites, levels of TOC (total organic carbon), DOC, AOX (adsorbable organic halides), SAC (spectral absorption coefficient at 254 nm), and turbidity were reduced significantly. DOC removal was stimulated at higher groundwater temperatures during AGR. Several substances were generally easily removable during both AGR and RBF, regardless of the site, season, discharge or redox regime. For some more refractory substances, however, removal efficiency turned out to be significantly influenced by redox conditions.


2008 ◽  
Vol 3 (3) ◽  
Author(s):  
Wilhelm Tischendorf ◽  
Hans Kupfersberger ◽  
Christian Schilling ◽  
Oliver Gabriel

Being Austria's fourth largest water-supply company, the Grazer Stadtwerke AG., has ensured the successful water-supply of the Styrian capital with 250.000 inhabitants for many years. The average daily water demand of the area amounts to about 50,000 m3. Approximately 30 % of the total demand is covered by the bulk water supply from the Zentral Wasser Versorgung Hochschwab Süd. The waterworks Friesach and Andritz, which cover the additional 70 % of the water demand, operate by means of artificial groundwater recharge plants where horizontal filter wells serve as drawing shafts. The groundwater recharge systems serve to increase the productivity of the aquifer and to reduce the share of the infiltration from the Mur River. Protection areas have been identified to ensure that the water quality of the aquifer stay at optimal levels. The protection areas are divided into zones indicating various restrictions for usage and planning. Two respective streams serve as the source for the water recharge plants. Different infiltration systems are utilised. Each of the various artificial groundwater recharge systems displays specific advantages and disadvantages in terms of operation as well as maintenance. In order to secure a sustainable drinking water supply the recharge capacity will be increased. Within an experimental setting different mixtures of top soils are investigated with respect to infiltration and retention rates and compared to the characteristics of the existing basins. It can be shown that the current operating sand basin with more than 90% grains in the range between 0.063 and 6.3 mm represents the best combination of infiltration and retention rates. In future experiments the performance of alternative grain size distributions as well as planting the top soil will be tested. Additionally, in order to optimize the additional groundwater recharge structures the composition of the subsurface water regarding its origin is statistically analyzed.


2013 ◽  
Vol 71 (8) ◽  
pp. 3477-3490 ◽  
Author(s):  
L. W. Daesslé ◽  
M. A. Pérez-Flores ◽  
J. Serrano-Ortiz ◽  
L. Mendoza-Espinosa ◽  
E. Manjarrez-Masuda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document