Reflections on Model Organisms in Evolutionary Developmental Biology

Author(s):  
Alan C. Love ◽  
Yoshinari Yoshida
Author(s):  
Alan C. Love

Many researchers have argued that evolutionary developmental biology (evo-devo) constitutes a challenge to standard evolutionary theory, requiring the explicit inclusion of developmental processes that generate variation and attention to organismal form (rather than adaptive function). An analysis of these developmental-form challenges indicates that the primary concern is not the inclusion of specific content but the epistemic organization or structure of evolutionary theory. Proponents of developmental-form challenges favor moving their considerations to a more central location in evolutionary theorizing, in part because of a commitment to the value of mechanistic explanation. This chapter argues there are multiple legitimate structures for evolutionary theory, instead of a single, overarching or canonical organization, and different theory presentations can be understood as idealizations that serve different investigative and explanatory goals in evolutionary inquiry.


2015 ◽  
Vol 145 (3-4) ◽  
pp. 192-200 ◽  
Author(s):  
Vladimir Krylov ◽  
Tereza Tlapakova

The genus Xenopus represents important model organisms in the field of developmental biology and chromosomal evolution. Developmental processes are tightly coupled with the analysis of gene function via genetic linkage and mapping. Cytogenetic techniques such as chromosome banding or FISH are essential tools for the determination of gene position and subsequently for the construction of linkage and physical maps. Here, we present a summary of key achievements in X. tropicalis and X. laevis cytogenetics with emphasis on the gene localization to chromosomes. The second part of this review is focused on the chromosomal evolution regarding both above-mentioned species. With respect to methodology, hybridization techniques such as FISH and chromosome-specific painting FISH are highlighted.


Genes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 83
Author(s):  
Angelica Miglioli ◽  
Laura Canesi ◽  
Isa D. L. Gomes ◽  
Michael Schubert ◽  
Rémi Dumollard

Nuclear Receptors (NRs) are a superfamily of transcription factors specific to metazoans that have the unique ability to directly translate the message of a signaling molecule into a transcriptional response. In vertebrates, NRs are pivotal players in countless processes of both embryonic and adult physiology, with embryonic development being one of the most dynamic periods of NR activity. Accumulating evidence suggests that NR signaling is also a major regulator of development in marine invertebrates, although ligands and transactivation dynamics are not necessarily conserved with respect to vertebrates. The explosion of genome sequencing projects and the interpretation of the resulting data in a phylogenetic context allowed significant progress toward an understanding of NR superfamily evolution, both in terms of molecular activities and developmental functions. In this context, marine invertebrates have been crucial for characterizing the ancestral states of NR-ligand interactions, further strengthening the importance of these organisms in the field of evolutionary developmental biology.


2021 ◽  
Author(s):  
Jerzy Dzik

An instructive introduction to the theory of evolution and its applications in biology, physics, chemistry, geology and humanities. The author shows that evolution is a physical process, occurring in geological time dimension, describes how the Darwin’s theory of natural selection works in immunology, neurobiology, sociology as well as in certain aspects of culture and political institutions. He also shows the effects achieved through the action of selection in different areas of biological and social life. He discusses such problems as: the ambiguity of the term “theory of evolution”, the falsifiability of evolutionary hypotheses, connection between evolution and thermodynamics, the concept of reductionism, methodological background of phylogenetics, cladistics, evolutionary developmental biology and homeotic genes, as well as the cumulative nature of social and cultural evolution.


Sign in / Sign up

Export Citation Format

Share Document