Technical Evaluation of Plug-in Electric Vehicles Charging Load on a Real Distribution Grid

Author(s):  
Behzad Hashemi ◽  
Payam Teimourzadeh Baboli
Author(s):  
Niklas Wehbring ◽  
Raphael Bleilevens ◽  
Julian Saat ◽  
Maximilian Rose ◽  
Albert Moser

2012 ◽  
pp. 115-135
Author(s):  
Aline Senart ◽  
Christian Souche ◽  
Philippe Daniel ◽  
Scott Kurth

Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4809
Author(s):  
Monika Topel ◽  
Josefine Grundius

As part of decarbonization efforts, countries are adapting their energy policies accordingly. Sweden has established ambitious energy goals, which include CO2 emissions reduction in the transport sector and high integration of renewables in the electricity sector. Coupling the two can be an enabling force towards fossil freedom. An increased share of electric vehicles is therefore a promising solution in this regard. However, there are challenges concerning the impact that a surge of electric vehicles would have on the electric infrastructure. Moreover, in Stockholm there is a shortage of power capacity due to limitations in the national transmission infrastructure, which further aggravates the situation. This paper develops a scenario-based simulation study to evaluate the impact of electric vehicle loads on the distribution grid of a Stockholm neighborhood. In this process, limiting factors and bottlenecks in the network were identified as being related to the peak power and transformer capacities for the years of 2025 and 2031. Two load management strategies and their potential to mitigate the power peaks generated from uncontrolled charging were investigated for the critical years.


Author(s):  
J. L. Calero Lagares ◽  
J. M. Roldan Fernandez ◽  
Manuel Burgos Payan ◽  
Jesus M. Riquelme Santos

Energies ◽  
2018 ◽  
Vol 11 (5) ◽  
pp. 1156 ◽  
Author(s):  
Nikoleta Andreadou ◽  
Evangelos Kotsakis ◽  
Marcelo Masera

The modernization of the distribution grid requires a huge amount of data to be transmitted and handled by the network. The deployment of Advanced Metering Infrastructure systems results in an increased traffic generated by smart meters. In this work, we examine the smart meter traffic that needs to be accommodated by a real distribution system. Parameters such as the message size and the message transmission frequency are examined and their effect on traffic is showed. Limitations of the system are presented, such as the buffer capacity needs and the maximum message size that can be communicated. For this scope, we have used the parameters of a real distribution network, based on a survey at which the European Distribution System Operators (DSOs) have participated. For the smart meter traffic, we have used two popular specifications, namely the G3-PLC–“G3 Power Line communication” and PRIME–acronym for “PoweRline Intelligent Metering Evolution”, to simulate the characteristics of a system that is widely used in practice. The results can be an insight for further development of the Information and Communication Technology (ICT) systems that control and monitor the Low Voltage (LV) distribution grid. The paper presents an analysis towards identifying the needs of distribution networks with respect to telecommunication data as well as the main parameters that can affect the Inverse Fast Fourier Transform (IFFT) system performance. Identifying such parameters is consequently beneficial to designing more efficient ICT systems for Advanced Metering Infrastructure.


Sign in / Sign up

Export Citation Format

Share Document