Placing parking lot of plug-in electric vehicles within a distribution grid considering high penetration level of photovoltaic generation

Author(s):  
E. Pashajavid ◽  
M.A. Golkar
2021 ◽  
Vol 13 (6) ◽  
pp. 3199
Author(s):  
Laith Shalalfeh ◽  
Ashraf AlShalalfeh ◽  
Khaled Alkaradsheh ◽  
Mahmoud Alhamarneh ◽  
Ahmad Bashaireh

An increasing number of electric vehicles (EVs) are replacing gasoline vehicles in the automobile market due to the economic and environmental benefits. The high penetration of EVs is one of the main challenges in the future smart grid. As a result of EV charging, an excessive overloading is expected in different elements of the power system, especially at the distribution level. In this paper, we evaluate the impact of EVs on the distribution system under three loading conditions (light, intermediate, and full). For each case, we estimate the maximum number of EVs that can be charged simultaneously before reaching different system limitations, including the undervoltage, overcurrent, and transformer capacity limit. Finally, we use the 19-node distribution system to study these limitations under different loading conditions. The 19-node system is one of the typical distribution systems in Jordan. Our work estimates the upper limit of the possible EV penetration before reaching the system stability margins.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1965
Author(s):  
Edoardo De Din ◽  
Fabian Bigalke ◽  
Marco Pau ◽  
Ferdinanda Ponci ◽  
Antonello Monti

The development of strategies for distribution network management is an essential element for increasing network performance and reducing the upgrade of physical assets. This paper analyzes a multi-timescale framework to control the voltage of distribution grids characterized by a high penetration of renewables. The multi-timescale solution is based on three levels that coordinate Distributed Generation (DG) and Energy Storage Systems (ESSs), but differs in terms of the timescales and objectives of the control levels. Realistic load and photovoltaic generation profiles were created for cloudy and clean sky conditions to evaluate the performance features of the multi-timescale framework. The proposed solution was also compared with different frameworks featuring two of the three levels, to highlight the contribution of the combination of the three levels in achieving the best performance.


2018 ◽  
Vol 8 (10) ◽  
pp. 1749 ◽  
Author(s):  
Mohamed Ahmed ◽  
Young-Chon Kim

Energy trading with electric vehicles provides opportunities to eliminate the high peak demand for electric vehicle charging while providing cost saving and profits for all participants. This work aims to design a framework for local energy trading with electric vehicles in smart parking lots where electric vehicles are able to exchange energy through buying and selling prices. The proposed architecture consists of four layers: the parking energy layer, data acquisition layer, communication network layer, and market layer. Electric vehicles are classified into three different types: seller electric vehicles (SEVs) with an excess of energy in the battery, buyer electric vehicles (BEVs) with lack of energy in the battery, and idle electric vehicles (IEVs). The parking lot control center (PLCC) plays a major role in collecting all available offer/demand information among parked electric vehicles. We propose a market mechanism based on the Knapsack Algorithm (KPA) to maximize the PLCC profit. Two cases are considered: electric vehicles as energy sellers and the PLCC as an energy buyer, and electric vehicles as energy buyers and the PLCC as an energy seller. A realistic parking pattern of a parking lot on a university campus is considered as a case study. Different scenarios are investigated with respect to the number of electric vehicles and amount of energy trading. The proposed market mechanism outperforms the conventional scheme in view of costs and profits.


Sign in / Sign up

Export Citation Format

Share Document