Next-Generation Probiotics Their Molecular Taxonomy and Health Benefits

Author(s):  
Shams Tabrez Khan ◽  
Abdul Malik
2016 ◽  
Vol 4 (3) ◽  
pp. 292-302 ◽  
Author(s):  
Mohammad Azimi ◽  
Kyle Schmaus ◽  
Valerie Greger ◽  
Dana Neitzel ◽  
Robert Rochelle ◽  
...  

Gut Pathogens ◽  
2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Rituparna De

Abstract Antimicrobial resistance (AMR) has emerged as an obstacle in the supple administration of antimicrobial agents to critical diarrheal patients. Most diarrheal pathogens have developed resistance against the major classes of antibiotics commonly used for assuaging diarrheal symptoms. Antimicrobial resistance develops when pathogens acquire antimicrobial resistance genes (ARGs) through genetic recombination from commensals and pathogens. These are the constituents of the complex microbiota in all ecological niches. The recombination events may occur in the environment or in the gut. Containment of AMR can be achieved through a complete understanding of the complex and diverse structure and function of the microbiota. Its taxonomic entities serve as focal points for the dissemination of antimicrobial resistance genetic determinants. Molecular methods complemented with culture-based diagnostics have been historically implemented to document these natural events. However, the advent of next-generation sequencing has revolutionized the field of molecular epidemiology. It has revolutionized the method of addressing relevant problems like diagnosis and surveillance of infectious diseases and the issue of antimicrobial resistance. Metagenomics is one such next-generation technique that has proved to be a monumental advancement in the area of molecular taxonomy. Current understanding of structure, function and dysbiosis of microbiota associated with antimicrobial resistance was realized due to its conception. This review describes the major milestones achieved due to the advent and implementation of this new technique in the context of antimicrobial resistance. These achievements span a wide panorama from the discovery of novel microorganisms to invention of translational value.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2463
Author(s):  
Arun K. Das ◽  
Pramod K. Nanda ◽  
Premanshu Dandapat ◽  
Samiran Bandyopadhyay ◽  
Patricia Gullón ◽  
...  

Consumers are increasingly interested in nutritious, safe and healthy muscle food products with reduced salt and fat that benefit their well-being. Hence, food processors are constantly in search of natural bioactive ingredients that offer health benefits beyond their nutritive values without affecting the quality of the products. Mushrooms are considered as next-generation healthy food components. Owing to their low content of fat, high-quality proteins, dietary fibre and the presence of nutraceuticals, they are ideally preferred in formulation of low-caloric functional foods. There is a growing trend to fortify muscle food with edible mushrooms to harness their goodness in terms of nutritive, bioactive and therapeutic values. The incorporation of mushrooms in muscle foods assumes significance, as it is favourably accepted by consumers because of its fibrous structure that mimics the texture with meat analogues offering unique taste and umami flavour. This review outlines the current knowledge in the literature about the nutritional richness, functional bioactive compounds and medicinal values of mushrooms offering various health benefits. Furthermore, the effects of functional ingredients of mushrooms in improving the quality and sensory attributes of nutritionally superior and next-generation healthier muscle food products are also highlighted in this paper.


2004 ◽  
Vol 171 (4S) ◽  
pp. 389-389
Author(s):  
Manoj Monga ◽  
Ramakrishna Venkatesh ◽  
Sara Best ◽  
Caroline D. Ames ◽  
Courtney Lee ◽  
...  

2011 ◽  
Vol 44 (8) ◽  
pp. 48
Author(s):  
HEIDI SPLETE
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document