Corridor Allocation as a Constrained Optimization Problem Using a Permutation-Based Multi-objective Genetic Algorithm

Author(s):  
Zahnupriya Kalita ◽  
Dilip Datta
2014 ◽  
Vol 962-965 ◽  
pp. 2903-2908
Author(s):  
Yun Lian Liu ◽  
Wen Li ◽  
Tie Bin Wu ◽  
Yun Cheng ◽  
Tao Yun Zhou ◽  
...  

An improved multi-objective genetic algorithm is proposed to solve constrained optimization problems. The constrained optimization problem is converted into a multi-objective optimization problem. In the evolution process, our algorithm is based on multi-objective technique, where the population is divided into dominated and non-dominated subpopulation. Arithmetic crossover operator is utilized for the randomly selected individuals from dominated and non-dominated subpopulation, respectively. The crossover operator can lead gradually the individuals to the extreme point and improve the local searching ability. Diversity mutation operator is introduced for non-dominated subpopulation. Through testing the performance of the proposed algorithm on 3 benchmark functions and 1 engineering optimization problems, and comparing with other meta-heuristics, the result of simulation shows that the proposed algorithm has great ability of global search. Keywords: multi-objective optimization;genetic algorithm;constrained optimization problem;engineering application


2015 ◽  
Vol 32 (05) ◽  
pp. 1550036 ◽  
Author(s):  
Chun-An Liu ◽  
Yuping Wang ◽  
Aihong Ren

For dynamic multi-objective constrained optimization problem (DMCOP), it is important to find a sufficient number of uniformly distributed and representative dynamic Pareto optimal solutions. In this paper, the time period of the DMCOP is first divided into several random subperiods. In each random subperiod, the DMCOP is approximately regarded as a static optimization problem by taking the time subperiod fixed. Then, in order to decrease the amount of computation and improve the effectiveness of the algorithm, the dynamic multi-objective constrained optimization problem is further transformed into a dynamic bi-objective constrained optimization problem based on the dynamic mean rank variance and dynamic mean density variance of the evolution population. The evolution operators and a self-check operator which can automatically checkout the change of time parameter are introduced to solve the optimization problem efficiently. And finally, a dynamic multi-objective constrained optimization evolutionary algorithm is proposed. Also, the convergence analysis for the proposed algorithm is given. The computer simulations are made on four dynamic multi-objective optimization test functions and the results demonstrate that the proposed algorithm can effectively track and find the varying Pareto optimal solutions or the varying Pareto fronts with the change of time.


2011 ◽  
Vol 48-49 ◽  
pp. 314-317
Author(s):  
Di Wu ◽  
Sheng Yao Yang ◽  
J.C. Liu

The performance optimization of cognitive radio is a multi-objective optimization problem. Existing genetic algorithms are difficult to assign the weight of each objective when the linear weighting method is used to simplify the multi-objective optimization problem into a single objective optimization problem. In this paper, we propose a new cognitive decision engine algorithm using multi-objective genetic algorithm with population adaptation. A multicarrier system is used for simulation analysis, and experimental results show that the proposed algorithm is effective and meets the real-time requirement.


2012 ◽  
Vol 457-458 ◽  
pp. 1142-1148
Author(s):  
Fu Yang ◽  
Liu Xin ◽  
Pei Yuan Guo

Hardware-software partitioning is the key technology in hardware-software co-design; the results will determine the design of system directly. Genetic algorithm is a classical search algorithm for solving such combinatorial optimization problem. A Multi-objective genetic algorithm for hardware-software partitioning is presented in this paper. This method can give consideration to both system performance and indicators such as time, power, area and cost, and achieve multi-objective optimization in system on programmable chip (SOPC). Simulation results show that the method can solve the SOPC hardware-software partitioning problem effectively.


Author(s):  
A. Farhang-Mehr ◽  
J. Wu ◽  
S. Azarm

Abstract Some preliminary results for a new multi-objective genetic algorithm (MOGA) are presented. This new algorithm aims at obtaining the fullest possible representation of observed Pareto solutions to a multi-objective optimization problem. The algorithm, hereafter called entropy-based MOGA (or E-MOGA), is based on an application of the concepts from the statistical theory of gases to a MOGA. A few set quality metrics are introduced and used for a comparison of the E-MOGA to a previously published MOGA. Due to the stochastic nature of the MOGA, confidence intervals with a 95% confidence level are calculated for the quality metrics based on the randomness in the initial population. An engineering example, namely the design of a speed reducer is used to demonstrate the performance of E-MOGA when compared to the previous MOGA.


Sign in / Sign up

Export Citation Format

Share Document