A Simple and Exact Algorithm to Solve Linear Problems with $$\ell ^1$$ -Based Regularizers

Author(s):  
Yohann Tendero ◽  
Igor Ciril ◽  
Jérôme Darbon
2013 ◽  
Vol 32 (9) ◽  
pp. 2634-2637
Author(s):  
Jun JI ◽  
Yi-ping LU ◽  
Jian-zhong ZHA ◽  
Yao-dong CUI
Keyword(s):  

2009 ◽  
Vol 7 (4) ◽  
pp. 464-468 ◽  
Author(s):  
Andrzej Lingas ◽  
Martin Wahlen
Keyword(s):  

Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1799
Author(s):  
Irene Gómez-Bueno ◽  
Manuel Jesús Castro Díaz ◽  
Carlos Parés ◽  
Giovanni Russo

In some previous works, two of the authors introduced a technique to design high-order numerical methods for one-dimensional balance laws that preserve all their stationary solutions. The basis of these methods is a well-balanced reconstruction operator. Moreover, they introduced a procedure to modify any standard reconstruction operator, like MUSCL, ENO, CWENO, etc., in order to be well-balanced. This strategy involves a non-linear problem at every cell at every time step that consists in finding the stationary solution whose average is the given cell value. In a recent paper, a fully well-balanced method is presented where the non-linear problems to be solved in the reconstruction procedure are interpreted as control problems. The goal of this paper is to introduce a new technique to solve these local non-linear problems based on the application of the collocation RK methods. Special care is put to analyze the effects of computing the averages and the source terms using quadrature formulas. A general technique which allows us to deal with resonant problems is also introduced. To check the efficiency of the methods and their well-balance property, they have been applied to a number of tests, ranging from easy academic systems of balance laws consisting of Burgers equation with some non-linear source terms to the shallow water equations—without and with Manning friction—or Euler equations of gas dynamics with gravity effects.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 567
Author(s):  
Łukasz Żmuda-Trzebiatowski ◽  
Piotr Iwicki

The paper examines effectiveness of the vibration correlation technique which allows determining the buckling or limit loads by means of measured natural frequencies of structures. A steel silo segment with a corrugated wall, stiffened with cold-formed channel section columns was analysed. The investigations included numerical analyses of: linear buckling, dynamic eigenvalue and geometrically static non-linear problems. Both perfect and imperfect geometries were considered. Initial geometrical imperfections included first and second buckling and vibration mode shapes with three amplitudes. The vibration correlation technique proved to be useful in estimating limit or buckling loads. It was very efficient in the case of small and medium imperfection magnitudes. The significant deviations between the predicted and calculated buckling and limit loads occurred when large imperfections were considered.


2021 ◽  
Vol 2 (3) ◽  
Author(s):  
Lilla Beke ◽  
Michal Weiszer ◽  
Jun Chen

AbstractThis paper compares different solution approaches for the multi-objective shortest path problem (MSPP) on multigraphs. Multigraphs as a modelling tool are able to capture different available trade-offs between objectives for a given section of a route. For this reason, they are increasingly popular in modelling transportation problems with multiple conflicting objectives (e.g., travel time and fuel consumption), such as time-dependent vehicle routing, multi-modal transportation planning, energy-efficient driving, and airport operations. The multigraph MSPP is more complex than the NP-hard simple graph MSPP. Therefore, approximate solution methods are often needed to find a good approximation of the true Pareto front in a given time budget. Evolutionary algorithms have been successfully applied for the simple graph MSPP. However, there has been limited investigation of their applications to the multigraph MSPP. Here, we extend the most popular genetic representations to the multigraph case and compare the achieved solution qualities. Two heuristic initialisation methods are also considered to improve the convergence properties of the algorithms. The comparison is based on a diverse set of problem instances, including both bi-objective and triple objective problems. We found that the metaheuristic approach with heuristic initialisation provides good solutions in shorter running times compared to an exact algorithm. The representations were all found to be competitive. The results are encouraging for future application to the time-constrained multigraph MSPP.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Zdeněk Dostál ◽  
Tomáš Brzobohatý ◽  
Oldřich Vlach

Abstract Bounds on the spectrum of Schur complements of subdomain stiffness matrices with respect to the interior variables are key ingredients of the convergence analysis of FETI (finite element tearing and interconnecting) based domain decomposition methods. Here we give bounds on the regular condition number of Schur complements of “floating” clusters arising from the discretization of 3D Laplacian on a cube decomposed into cube subdomains. The results show that the condition number of the cluster defined on a fixed domain decomposed into m × m × m cube subdomains connected by face and optionally edge averages increases proportionally to m. The estimates support scalability of unpreconditioned H-FETI-DP (hybrid FETI dual-primal) method. Though the research is most important for the solution of variational inequalities, the results of numerical experiments indicate that unpreconditioned H-FETI-DP with large clusters can be useful also for the solution of huge linear problems.


Sign in / Sign up

Export Citation Format

Share Document