Arctic Marine Ecosystems, Climate Change Impacts, and Governance Responses: An Integrated Perspective from the Barents Sea

Author(s):  
Stefan Koenigstein
2013 ◽  
Vol 10 (12) ◽  
pp. 8109-8128 ◽  
Author(s):  
P. E. Land ◽  
J. D. Shutler ◽  
R. D. Cowling ◽  
D. K. Woolf ◽  
P. Walker ◽  
...  

Abstract. We applied coincident Earth observation data collected during 2008 and 2009 from multiple sensors (RA2, AATSR and MERIS, mounted on the European Space Agency satellite Envisat) to characterise environmental conditions and integrated sea–air fluxes of CO2 in three Arctic seas (Greenland, Barents, Kara). We assessed net CO2 sink sensitivity due to changes in temperature, salinity and sea ice duration arising from future climate scenarios. During the study period the Greenland and Barents seas were net sinks for atmospheric CO2, with integrated sea–air fluxes of −36 ± 14 and −11 ± 5 Tg C yr−1, respectively, and the Kara Sea was a weak net CO2 source with an integrated sea–air flux of +2.2 ± 1.4 Tg C yr−1. The combined integrated CO2 sea–air flux from all three was −45 ± 18 Tg C yr−1. In a sensitivity analysis we varied temperature, salinity and sea ice duration. Variations in temperature and salinity led to modification of the transfer velocity, solubility and partial pressure of CO2 taking into account the resultant variations in alkalinity and dissolved organic carbon (DOC). Our results showed that warming had a strong positive effect on the annual integrated sea–air flux of CO2 (i.e. reducing the sink), freshening had a strong negative effect and reduced sea ice duration had a small but measurable positive effect. In the climate change scenario examined, the effects of warming in just over a decade of climate change up to 2020 outweighed the combined effects of freshening and reduced sea ice duration. Collectively these effects gave an integrated sea–air flux change of +4.0 Tg C in the Greenland Sea, +6.0 Tg C in the Barents Sea and +1.7 Tg C in the Kara Sea, reducing the Greenland and Barents sinks by 11% and 53%, respectively, and increasing the weak Kara Sea source by 81%. Overall, the regional integrated flux changed by +11.7 Tg C, which is a 26% reduction in the regional sink. In terms of CO2 sink strength, we conclude that the Barents Sea is the most susceptible of the three regions to the climate changes examined. Our results imply that the region will cease to be a net CO2 sink in the 2050s.


2012 ◽  
Vol 9 (9) ◽  
pp. 12377-12432 ◽  
Author(s):  
P. E. Land ◽  
J. D. Shutler ◽  
R. D. Cowling ◽  
D. K. Woolf ◽  
P. Walker ◽  
...  

Abstract. During 2008 and 2009 we applied coincident Earth observation data collected from multiple sensors (RA2, AATSR and MERIS, mounted on the European Space Agency satellite Envisat) to characterise environmental conditions and net sea-air fluxes of CO2 in three Arctic seas (Greenland, Barents, Kara) to assess net CO2 sink sensitivity due to changes in temperature, salinity and sea ice duration arising from future climate scenarios. During the study period the Greenland and Barents Seas were net sinks for atmospheric CO2, with sea-air fluxes of −34±13 and −13±6 Tg C yr−1, respectively and the Kara Sea was a weak net CO2 source with a sea-air flux of +1.5±1.1 Tg C yr−1. The combined net CO2 sea-air flux from all three was −45±18 Tg C yr−1. In a sensitivity analysis we varied temperature, salinity and sea ice duration. Variations in temperature and salinity led to modification of the transfer velocity, solubility and partial pressure of CO2 taking into account the resultant variations in alkalinity and dissolved organic carbon (DOC). Our results showed that warming had a strong positive effect on the annual net sea-air flux of CO2 (i.e. reducing the sink), freshening had a strong negative effect and reduced sea ice duration had a small but measurable positive effect. In the climate change scenario examined, the effects of warming in just over a decade of climate change up to 2020 outweighed the combined effects of freshening and reduced sea ice duration. Collectively these effects gave a net sea-air flux change of +3.5 Tg C in the Greenland Sea, +5.5 Tg C in the Barents Sea and +1.4 Tg C in the Kara Sea, reducing the Greenland and Barents sinks by 10% and 50% respectively, and increasing the weak Kara Sea source by 64%. Overall, the regional flux changed by +10.4 Tg C, reducing the regional sink by 23%. In terms of CO2 sink strength we conclude that the Barents Sea is the most susceptible of the three regions to the climate changes examined. Our results imply that the region will cease to be a net CO2 sink by 2060.


2013 ◽  
Vol 9 (9) ◽  
pp. 932-947 ◽  
Author(s):  
Kathrine Michalsen ◽  
Padmini Dalpadado ◽  
Elena Eriksen ◽  
Harald Gjøsæter ◽  
Randi B. Ingvaldsen ◽  
...  

2013 ◽  
Vol 70 (6) ◽  
pp. 1069-1074 ◽  
Author(s):  
William W. L. Cheung ◽  
Daniel Pauly ◽  
Jorge L. Sarmiento

Abstract Cheung, W. W. L., Pauly, D., and Sarmiento, J. L. 2013. How to make progress in projecting climate change impacts. – ICES Journal of Marine Science, 70: 1069–1074. Scientific modelling has become a crucial tool for assessing climate change impacts on marine resources. Brander et al. criticize the treatment of reliability and uncertainty of such models, with specific reference to Cheung et al. (2013, Nature Climate Change, 3: 254–258) and their projections of a decrease in maximum body size of marine fish under climate change. Here, we use the specific criticisms of Brander et al. (2013, ICES Journal of Marine Science) on Cheung et al. (2013) as examples to discuss ways to make progress in scientific modelling in marine science. We address the technical criticisms by Brander et al., then their more general comments on uncertainty. The growth of fish is controlled and limited by oxygen, as documented in a vast body of peer-reviewed literature that elaborates on a robust theory based on abundant data. The results from Cheung et al. were obtained using published, reproducible and peer-reviewed methods, and the results agree with the empirical data; the key assumptions and uncertainties of the analysis were stated. These findings can serve as a step towards improving our understanding of climate change impacts on marine ecosystems. We suggest that, as in other fields of science, it is important to develop incrementally (or radically) new approaches and analyses that extend, and ultimately improve, our understanding and projections of climate change effects on marine ecosystems.


2018 ◽  
Vol 32 ◽  
pp. 121-145 ◽  
Author(s):  
Ludmila Ivanova ◽  
◽  
Konstantin Sokolov ◽  
Galina Kharitonova ◽  
◽  
...  

Vestnik MGTU ◽  
2018 ◽  
Vol 21 (2) ◽  
pp. 228-236 ◽  
Author(s):  
V. I. Kapkov ◽  
◽  
E. V. Shoshina ◽  

2015 ◽  
Vol 73 (5) ◽  
pp. 1272-1282 ◽  
Author(s):  
Mark R. Payne ◽  
Manuel Barange ◽  
William W. L. Cheung ◽  
Brian R. MacKenzie ◽  
Harold P. Batchelder ◽  
...  

Abstract Projections of the impacts of climate change on marine ecosystems are a key prerequisite for the planning of adaptation strategies, yet they are inevitably associated with uncertainty. Identifying, quantifying, and communicating this uncertainty is key to both evaluating the risk associated with a projection and building confidence in its robustness. We review how uncertainties in such projections are handled in marine science. We employ an approach developed in climate modelling by breaking uncertainty down into (i) structural (model) uncertainty, (ii) initialization and internal variability uncertainty, (iii) parametric uncertainty, and (iv) scenario uncertainty. For each uncertainty type, we then examine the current state-of-the-art in assessing and quantifying its relative importance. We consider whether the marine scientific community has addressed these types of uncertainty sufficiently and highlight the opportunities and challenges associated with doing a better job. We find that even within a relatively small field such as marine science, there are substantial differences between subdisciplines in the degree of attention given to each type of uncertainty. We find that initialization uncertainty is rarely treated explicitly and reducing this type of uncertainty may deliver gains on the seasonal-to-decadal time-scale. We conclude that all parts of marine science could benefit from a greater exchange of ideas, particularly concerning such a universal problem such as the treatment of uncertainty. Finally, marine science should strive to reach the point where scenario uncertainty is the dominant uncertainty in our projections.


Sign in / Sign up

Export Citation Format

Share Document