Heart Sounds Classification Using Images from Wavelet Transformation

Author(s):  
Diogo Marcelo Nogueira ◽  
Mohammad Nozari Zarmehri ◽  
Carlos Abreu Ferreira ◽  
Alípio M. Jorge ◽  
Luís Antunes
Author(s):  
S. Thabasu Kannan ◽  
S. Azhagu Senthil

Now-a-days watermarking plays a pivotal role in most of the industries for providing security to their own as well as hired or leased data. This paper its main aim is to study the multiresolution watermarking algorithms and also choosing the effective and efficient one for improving the resistance in data compression. Computational savings from such a multiresolution watermarking framework is obvious. The multiresolutional property makes our watermarking scheme robust to image/video down sampling operation by a power of two in either space or time. There is no common framework for multiresolutional digital watermarking of both images and video. A multiresolution watermarking based on the wavelet transformation is selected in each frequency band of the Discrete Wavelet Transform (DWT) domain and therefore it can resist the destruction of image processing.   The rapid development of Internet introduces a new set of challenging problems regarding security. One of the most significant problems is to prevent unauthorized copying of digital production from distribution. Digital watermarking has provided a powerful way to claim intellectual protection. We proposed an idea for enhancing the robustness of extracted watermarks. Watermark can be treated as a transmitted signal, while the destruction from attackers is regarded as a noisy distortion in channel.  For the implementation, we have used minimum nine coordinate positions. The watermarking algorithms to be taken for this study are Corvi algorithm and Wang algorithm. In all graph, we have plotted X axis as peak signal to noise ratio (PSNR) and y axis as Correlation with original watermark. The threshold value ά is set to 5. The result is smaller than the threshold value then it is feasible, otherwise it is not.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 717
Author(s):  
Mariia Nazarkevych ◽  
Natalia Kryvinska ◽  
Yaroslav Voznyi

This article presents a new method of image filtering based on a new kind of image processing transformation, particularly the wavelet-Ateb–Gabor transformation, that is a wider basis for Gabor functions. Ateb functions are symmetric functions. The developed type of filtering makes it possible to perform image transformation and to obtain better biometric image recognition results than traditional filters allow. These results are possible due to the construction of various forms and sizes of the curves of the developed functions. Further, the wavelet transformation of Gabor filtering is investigated, and the time spent by the system on the operation is substantiated. The filtration is based on the images taken from NIST Special Database 302, that is publicly available. The reliability of the proposed method of wavelet-Ateb–Gabor filtering is proved by calculating and comparing the values of peak signal-to-noise ratio (PSNR) and mean square error (MSE) between two biometric images, one of which is filtered by the developed filtration method, and the other by the Gabor filter. The time characteristics of this filtering process are studied as well.


Author(s):  
Madhwendra Nath ◽  
Subodh Srivastava ◽  
Niharika Kulshrestha ◽  
Dilbag Singh

Adults born after 1970s are more prone to cardiovascular diseases. Death rate percentage is quite high due to heart related diseases. Therefore, there is necessity to enquire the problem or detection of heart diseases earlier for their proper treatment. As, Valvular heart disease, that is, stenosis and regurgitation of heart valve, are also a major cause of heart failure; which can be diagnosed at early-stage by detection and analysis of heart sound signal, that is, HS signal. In this proposed work, an attempt has been made to detect and localize the major heart sounds, that is, S1 and S2. The work in this article consists of three parts. Firstly, self-acquisition of Phonocardiogram (PCG) and Electrocardiogram (ECG) signal through a self-assembled, data-acquisition set-up. The Phonocardiogram (PCG) signal is acquired from all the four auscultation areas, that is, Aortic, Pulmonic, Tricuspid and Mitral on human chest, using electronic stethoscope. Secondly, the major heart sounds, that is, S1 and S2are detected using 3rd Order Normalized Average Shannon energy Envelope (3rd Order NASE) Algorithm. Further, an auto-thresholding has been used to localize time gates of S1 and S2 and that of R-peaks of simultaneously recorded ECG signal. In third part; the successful detection rate of S1 and S2, from self-acquired PCG signals is computed and compared. A total of 280 samples from same subjects as well as from different subjects (of age group 15–30 years) have been taken in which 70 samples are taken from each auscultation area of human chest. Moreover, simultaneous recording of ECG has also been performed. It was analyzed and observed that detection and localization of S1 and S2 found 74% successful for the self-acquired heart sound signal, if the heart sound data is recorded from pulmonic position of Human chest. The success rate could be much higher, if standard data base of heart sound signal would be used for the same analysis method. The, remaining three auscultations areas, that is, Aortic, Tricuspid, and Mitral have smaller success rate of detection of S1 and S2 from self-acquired PCG signals. So, this work justifies that the Pulmonic position of heart is most suitable auscultation area for acquiring PCG signal for detection and localization of S1 and S2 much accurately and for analysis purpose.


Healthcare ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 169
Author(s):  
Sergi Gómez-Quintana ◽  
Christoph E. Schwarz ◽  
Ihor Shelevytsky ◽  
Victoriya Shelevytska ◽  
Oksana Semenova ◽  
...  

The current diagnosis of Congenital Heart Disease (CHD) in neonates relies on echocardiography. Its limited availability requires alternative screening procedures to prioritise newborns awaiting ultrasound. The routine screening for CHD is performed using a multidimensional clinical examination including (but not limited to) auscultation and pulse oximetry. While auscultation might be subjective with some heart abnormalities not always audible it increases the ability to detect heart defects. This work aims at developing an objective clinical decision support tool based on machine learning (ML) to facilitate differentiation of sounds with signatures of Patent Ductus Arteriosus (PDA)/CHDs, in clinical settings. The heart sounds are pre-processed and segmented, followed by feature extraction. The features are fed into a boosted decision tree classifier to estimate the probability of PDA or CHDs. Several mechanisms to combine information from different auscultation points, as well as consecutive sound cycles, are presented. The system is evaluated on a large clinical dataset of heart sounds from 265 term and late-preterm newborns recorded within the first six days of life. The developed system reaches an area under the curve (AUC) of 78% at detecting CHD and 77% at detecting PDA. The obtained results for PDA detection compare favourably with the level of accuracy achieved by an experienced neonatologist when assessed on the same cohort.


Sign in / Sign up

Export Citation Format

Share Document