Deep Learning for Biometric Face Recognition: Experimental Study on Benchmark Data Sets

Author(s):  
Natalya Selitskaya ◽  
S. Sielicki ◽  
L. Jakaite ◽  
V. Schetinin ◽  
F. Evans ◽  
...  
2018 ◽  
Vol 11 (3) ◽  
pp. 386-403 ◽  
Author(s):  
M. Arif Wani ◽  
Saduf Afzal

Purpose Many strategies have been put forward for training deep network models, however, stacking of several layers of non-linearities typically results in poor propagation of gradients and activations. The purpose of this paper is to explore the use of two steps strategy where initial deep learning model is obtained first by unsupervised learning and then optimizing the initial deep learning model by fine tuning. A number of fine tuning algorithms are explored in this work for optimizing deep learning models. This includes proposing a new algorithm where Backpropagation with adaptive gain algorithm is integrated with Dropout technique and the authors evaluate its performance in the fine tuning of the pretrained deep network. Design/methodology/approach The parameters of deep neural networks are first learnt using greedy layer-wise unsupervised pretraining. The proposed technique is then used to perform supervised fine tuning of the deep neural network model. Extensive experimental study is performed to evaluate the performance of the proposed fine tuning technique on three benchmark data sets: USPS, Gisette and MNIST. The authors have tested the approach on varying size data sets which include randomly chosen training samples of size 20, 50, 70 and 100 percent from the original data set. Findings Through extensive experimental study, it is concluded that the two steps strategy and the proposed fine tuning technique significantly yield promising results in optimization of deep network models. Originality/value This paper proposes employing several algorithms for fine tuning of deep network model. A new approach that integrates adaptive gain Backpropagation (BP) algorithm with Dropout technique is proposed for fine tuning of deep networks. Evaluation and comparison of various algorithms proposed for fine tuning on three benchmark data sets is presented in the paper.


Author(s):  
Hai Yang ◽  
Rui Chen ◽  
Dongdong Li ◽  
Zhe Wang

Abstract Motivation The discovery of cancer subtyping can help explore cancer pathogenesis, determine clinical actionability in treatment, and improve patients' survival rates. However, due to the diversity and complexity of multi-omics data, it is still challenging to develop integrated clustering algorithms for tumor molecular subtyping. Results We propose Subtype-GAN, a deep adversarial learning approach based on the multiple-input multiple-output neural network to model the complex omics data accurately. With the latent variables extracted from the neural network, Subtype-GAN uses consensus clustering and the Gaussian Mixture model to identify tumor samples' molecular subtypes. Compared with other state-of-the-art subtyping approaches, Subtype-GAN achieved outstanding performance on the benchmark data sets consisting of ∼4,000 TCGA tumors from 10 types of cancer. We found that on the comparison data set, the clustering scheme of Subtype-GAN is not always similar to that of the deep learning method AE but is identical to that of NEMO, MCCA, VAE, and other excellent approaches. Finally, we applied Subtype-GAN to the BRCA data set and automatically obtained the number of subtypes and the subtype labels of 1031 BRCA tumors. Through the detailed analysis, we found that the identified subtypes are clinically meaningful and show distinct patterns in the feature space, demonstrating the practicality of Subtype-GAN. Availability The source codes, the clustering results of Subtype-GAN across the benchmark data sets are available at https://github.com/haiyang1986/Subtype-GAN. Supplementary information Supplementary data are available at Bioinformatics online.


Face recognition plays a vital role in security purpose. In recent years, the researchers have focused on the pose illumination, face recognition, etc,. The traditional methods of face recognition focus on Open CV’s fisher faces which results in analyzing the face expressions and attributes. Deep learning method used in this proposed system is Convolutional Neural Network (CNN). Proposed work includes the following modules: [1] Face Detection [2] Gender Recognition [3] Age Prediction. Thus the results obtained from this work prove that real time age and gender detection using CNN provides better accuracy results compared to other existing approaches.


Author(s):  
Kyungkoo Jun

Background & Objective: This paper proposes a Fourier transform inspired method to classify human activities from time series sensor data. Methods: Our method begins by decomposing 1D input signal into 2D patterns, which is motivated by the Fourier conversion. The decomposition is helped by Long Short-Term Memory (LSTM) which captures the temporal dependency from the signal and then produces encoded sequences. The sequences, once arranged into the 2D array, can represent the fingerprints of the signals. The benefit of such transformation is that we can exploit the recent advances of the deep learning models for the image classification such as Convolutional Neural Network (CNN). Results: The proposed model, as a result, is the combination of LSTM and CNN. We evaluate the model over two data sets. For the first data set, which is more standardized than the other, our model outperforms previous works or at least equal. In the case of the second data set, we devise the schemes to generate training and testing data by changing the parameters of the window size, the sliding size, and the labeling scheme. Conclusion: The evaluation results show that the accuracy is over 95% for some cases. We also analyze the effect of the parameters on the performance.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Yahya Albalawi ◽  
Jim Buckley ◽  
Nikola S. Nikolov

AbstractThis paper presents a comprehensive evaluation of data pre-processing and word embedding techniques in the context of Arabic document classification in the domain of health-related communication on social media. We evaluate 26 text pre-processings applied to Arabic tweets within the process of training a classifier to identify health-related tweets. For this task we use the (traditional) machine learning classifiers KNN, SVM, Multinomial NB and Logistic Regression. Furthermore, we report experimental results with the deep learning architectures BLSTM and CNN for the same text classification problem. Since word embeddings are more typically used as the input layer in deep networks, in the deep learning experiments we evaluate several state-of-the-art pre-trained word embeddings with the same text pre-processing applied. To achieve these goals, we use two data sets: one for both training and testing, and another for testing the generality of our models only. Our results point to the conclusion that only four out of the 26 pre-processings improve the classification accuracy significantly. For the first data set of Arabic tweets, we found that Mazajak CBOW pre-trained word embeddings as the input to a BLSTM deep network led to the most accurate classifier with F1 score of 89.7%. For the second data set, Mazajak Skip-Gram pre-trained word embeddings as the input to BLSTM led to the most accurate model with F1 score of 75.2% and accuracy of 90.7% compared to F1 score of 90.8% achieved by Mazajak CBOW for the same architecture but with lower accuracy of 70.89%. Our results also show that the performance of the best of the traditional classifier we trained is comparable to the deep learning methods on the first dataset, but significantly worse on the second dataset.


Sign in / Sign up

Export Citation Format

Share Document