Model construction guided by regression effect process

2021 ◽  
pp. 261-299
Author(s):  
John O’Quigley
2019 ◽  
Vol 10 (2) ◽  
pp. 117-125
Author(s):  
Dana Kubíčková ◽  
◽  
Vladimír Nulíček ◽  

The aim of the research project solved at the University of Finance and administration is to construct a new bankruptcy model. The intention is to use data of the firms that have to cease their activities due to bankruptcy. The most common method for bankruptcy model construction is multivariate discriminant analyses (MDA). It allows to derive the indicators most sensitive to the future companies’ failure as a parts of the bankruptcy model. One of the assumptions for using the MDA method and reassuring the reliable results is the normal distribution and independence of the input data. The results of verification of this assumption as the third stage of the project are presented in this article. We have revealed that this assumption is met only in a few selected indicators. Better results were achieved in the indicators in the set of prosperous companies and one year prior the failure. The selected indicators intended for the bankruptcy model construction thus cannot be considered as suitable for using the MDA method.


2020 ◽  
Vol 29 (4) ◽  
pp. 741-757
Author(s):  
Kateryna Hazdiuk ◽  
◽  
Volodymyr Zhikharevich ◽  
Serhiy Ostapov ◽  
◽  
...  

This paper deals with the issue of model construction of the self-regeneration and self-replication processes using movable cellular automata (MCAs). The rules of cellular automaton (CA) interactions are found according to the concept of equilibrium neighborhood. The method is implemented by establishing these rules between different types of cellular automata (CAs). Several models for two- and three-dimensional cases are described, which depict both stable and unstable structures. As a result, computer models imitating such natural phenomena as self-replication and self-regeneration are obtained and graphically presented.


Author(s):  
Feifan Chen ◽  
Zuwei Cao ◽  
Emad M. Grais ◽  
Fei Zhao

Abstract Purpose Noise-induced hearing loss (NIHL) is a global issue that impacts people’s life and health. The current review aims to clarify the contributions and limitations of applying machine learning (ML) to predict NIHL by analyzing the performance of different ML techniques and the procedure of model construction. Methods The authors searched PubMed, EMBASE and Scopus on November 26, 2020. Results Eight studies were recruited in the current review following defined inclusion and exclusion criteria. Sample size in the selected studies ranged between 150 and 10,567. The most popular models were artificial neural networks (n = 4), random forests (n = 3) and support vector machines (n = 3). Features mostly correlated with NIHL and used in the models were: age (n = 6), duration of noise exposure (n = 5) and noise exposure level (n = 4). Five included studies used either split-sample validation (n = 3) or ten-fold cross-validation (n = 2). Assessment of accuracy ranged in value from 75.3% to 99% with a low prediction error/root-mean-square error in 3 studies. Only 2 studies measured discrimination risk using the receiver operating characteristic (ROC) curve and/or the area under ROC curve. Conclusion In spite of high accuracy and low prediction error of machine learning models, some improvement can be expected from larger sample sizes, multiple algorithm use, completed reports of model construction and the sufficient evaluation of calibration and discrimination risk.


Author(s):  
Fei Yang ◽  
Chengrong Ma ◽  
Bowen Zhang ◽  
Xuannan Chen ◽  
Li Cao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document