scholarly journals Contributions and limitations of using machine learning to predict noise-induced hearing loss

Author(s):  
Feifan Chen ◽  
Zuwei Cao ◽  
Emad M. Grais ◽  
Fei Zhao

Abstract Purpose Noise-induced hearing loss (NIHL) is a global issue that impacts people’s life and health. The current review aims to clarify the contributions and limitations of applying machine learning (ML) to predict NIHL by analyzing the performance of different ML techniques and the procedure of model construction. Methods The authors searched PubMed, EMBASE and Scopus on November 26, 2020. Results Eight studies were recruited in the current review following defined inclusion and exclusion criteria. Sample size in the selected studies ranged between 150 and 10,567. The most popular models were artificial neural networks (n = 4), random forests (n = 3) and support vector machines (n = 3). Features mostly correlated with NIHL and used in the models were: age (n = 6), duration of noise exposure (n = 5) and noise exposure level (n = 4). Five included studies used either split-sample validation (n = 3) or ten-fold cross-validation (n = 2). Assessment of accuracy ranged in value from 75.3% to 99% with a low prediction error/root-mean-square error in 3 studies. Only 2 studies measured discrimination risk using the receiver operating characteristic (ROC) curve and/or the area under ROC curve. Conclusion In spite of high accuracy and low prediction error of machine learning models, some improvement can be expected from larger sample sizes, multiple algorithm use, completed reports of model construction and the sufficient evaluation of calibration and discrimination risk.

2021 ◽  
Author(s):  
Long Miao ◽  
Boshen Wang ◽  
Juan Zhang ◽  
Lihong Yin ◽  
Yuepu Pu

Abstract This study aimed to explore the association of several single nucleotide polymorphisms (SNPs) within the AKT2 gene and noise-induced hearing loss (NIHL) susceptibility and explore the potential mechanism underlying NIHL. Three SNPs (rs2304186, rs41275750 and rs76524493) were genotyped in a Chinese population which consists of 690 NIHL patients and 650 normal hearing controls. Bioinformatic analysis was conducted to predict the potential miRNA-binding site of SNPs. Cell transfection and dual-luciferase reporter assay were performed to investigate the potential molecular mechanism of SNPs involved in NIHL. The results revealed rs2304186 GT genotype (OR = 1.41; 95% CI = 1.09–1.83) and TT genotype (OR = 1.51; 95% CI = 1.08–2.10) imparted increased risk of NIHL, and the increased risk could also be found in a dominant model (OR = 1.44; 95% CI = 1.12–1.84). The stratification analysis showed that rs2304186 GT/TT conferred a higher risk for NIHL, especially in subgroups of male, age (35–45 and > 45 years), noise exposure time (> 16 years), and noise exposure level (≤ 85 and ≥ 92 dB), compared with GG genotype. In addition, the haplotype TCCTACT (rs2304186-rs41275750-rs76524493) was associated with NIHL risk (OR = 1.19; 95% CI = 1.02–1.40). Rs2304186 G allele combined with hsa-miR-625-5p mimics could significantly decrease the luciferase activity compared with T allele, indicating rs2304186 altered the binding affinity of hsa-miR-625-5p to SNP rs2304186 mutation region, thus directly targeting AKT2. In conclusion, our study provides evidence for the first time that SNP rs2304186 of AKT2 3′UTR affects NIHL susceptibility by affecting the binding affinity of has-miR-625-5p in an allele-specific manner and it may act as a potential biomarker of NIHL susceptibility.


2021 ◽  
Vol 46 (3) ◽  
pp. 219-227
Author(s):  
Abirvab Naha ◽  
Nasima Akhtar ◽  
Pran Gopal Datta ◽  
Mohammad Habibur Rahman ◽  
Riashat Azim Majumder ◽  
...  

Background: Occupational noise is considered as a global problem with social and physiological impacts, causing noise-induced hearing loss (NIHL). High levels of occupational noise is a problem in all regions of the world. Road traffic produces high noise levels that can cause damage to the traffic police hearing. Hence, occupational hearing loss is a well-known outcome of noise exposure at work. Objectives: The study aimed to measure the noise exposure level at different traffic points and determine the occurrence rate and severity of hearing loss among the traffic police of Dhaka Metropolitan City. Methods: This cross-sectional study was conducted during 2017-2019 in 28 selected traffic points of Dhaka Metropolitan City under four traffic zone (East, West, North, and South) and among 100 traffic police who were working there and met the inclusion and exclusion criteria. Noise exposure level was measured from all selected traffic points with a digital sound level meter. Data were collected by face to face interview with a pretested semi-structured questionnaire followed by an otoscopic examination, tuning fork tests, and a baseline audiogram. To see the association, Chi-square tests or Pearson’s correlation coefficient (r) tests were performed. Results: This study revealed that the average noise exposure level at East, West, North, and South zones are respectively 125.6 dB, 112.9 dB, 121.3 dB, and 119.4 dB. At every point, the noise exposure level was more than the acceptable limit set by the Occupational Safety and Health Administration (OSHA). In the audiometry report of 100 traffic police, 64% had sensorineural hearing loss. Of them 85% had mild, 9% had moderate and 6% with severe hearing loss. Notch in 4 kHz in an audiogram was present in the right ear of 46% of respondents and left ear of 52% respondents. It was observed that hearing loss was significantly associated with increasing age and job duration. Conclusion: Traffic police of Dhaka Metropolitan City is in constant risk of noise induced hearing loss as the ambient noise of this city is very high. Regular assessment and hearing screening is recommended for all the traffic police who are exposed to noise. Bangladesh Med Res Counc Bull 2020; 46(3): 219-227


2013 ◽  
Vol 1 (1) ◽  
Author(s):  
Hardini Tjan ◽  
Fransiska Lintong ◽  
Wenny Supit

Abstract: Noise induced hearing loss is caused by noise loud in the long period and a noisy work environment. Noisy work environment is a major problem in occupational health in various countries. The relationship between excessive noise exposure and hearing loss has been recognised since ancient times. Early epidemiological studies of noise induced hearing loss explored the damage risk relationship between occupational noise exposure level and the degree of hearing loss. The purpose of this study is to determine effect of engine noise electronics to auditory disfunction. The research methodeology used is an analytical method with a cross sectional approach. Samples were of 20 person taken from workers at the playground timezone and amazone. Data were obtained through questionnaires and examination of hearing function with the audiometri. Data were analyzed by using the Statistical Product and Service Solutions program (SPSS) and using the Fisher Exact test. Conclusion: The results showed that : There is a 75% hearing loss in all worker. The results of bivariate analysis showed there is no significant association between the hearing loss with the intensity level of noise (p = 0,032). The most common hearing loss is sensorineural deafness which generally occours in both ear. From the result of this study it can be concluded that the workers who work in a place that has the high intensity noise have greater risk of suffening from hearing loss. Keywords: Timezone and Amazone Workers, Noisy, Hearing.     Abstrak: Gangguan pendengaran akibat bising ialah gangguan pendengaran yang disebabkan akibat terpajan oleh bising yang cukup keras dalam jangka waktu yang cukup lama dan biasanya disebabkan oleh bising di lingkungan kerja. Bising lingkungan kerja merupakan masalah utama pada kesehatan kerja di berbagai negara. Hubungan antara paparan bising yang berlebihan dan kehilangan pendengaran telah dikenal sejak zaman kuno. Awal studi epidemiologi, gangguan pendengaran yang disebabkan oleh bising mengeksplorasi adanya hubungan atau faktor resiko antara pekerjaan, paparan tingkat kebisingan dan derajat gangguan pendengaran. Tujuan penelitian ini untuk mengetahui efek bising mesin elektronika terhadap gangguan fungsi pendengaran. Metode penelitian yang digunakan yaitu metode analitik dengan menggunakan rancangan cross sectional study. Sampel berjumlah 20 orang yang diambil dari pekerja di tempat bermain timezone dan amazone. Data diperoleh melalui kuisioner dan pemeriksaan fungsi pendengaran dengan menggunakan Audiometri. Data dianalisis dengan menggunakan Statistical Program Product and Service Solution (SPSS) dan menggunakan uji Fisher Exact. Simpulan: Hasil penelitian menunjukkan bahwa : Terdapat gangguan pendengaran sebesar 75 % pada seluruh pekerja. Hasil analisis bivariat menunjukan ada hubungan yang bermakna antara gangguan pendengaran dengan tingkat intensitas bising (p =  0,032).  Gangguan pendengaran yang paling banyak diderita oleh pekerja adalah tuli sensorineural (persepsi) yang umumnya terjadi pada kedua telinga. Dari hasil penelitian ini dapat disimpulkan bahwa pekerja yang bekerja pada intensitas bising yang tinggi memiliki resiko lebih besar menderita gangguan pendengaran. Kata Kunci: Pekerja Timezone & Amazone, Bising, Pendengaran


Standards ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 32-42
Author(s):  
Sirri Ammar ◽  
Aziah Daud ◽  
Ahmad Filza Ismail ◽  
Ailin Razali

Background: Palm oil mill workers in Malaysia are exposed to hazardous levels of noise in the workplace, and thus are at risk of developing noise-induced hearing loss (NIHL). In 2019, Malaysia introduced a new noise regulation, which reduced the level of permissible noise exposure. Objectives: This study aims to determine the prevalence of NIHL among palm oil mill workers based on screening data and assess the effects of different noise exposure levels on NIHL. Methods: A cross-sectional study was conducted by analyzing data from noise risk assessment reports of selected mills and screening audiometric data from workers. NIHL was defined as bilateral high-frequency hearing loss. Results: The overall NIHL prevalence was 50.8%. Noise exposure level and age were significant predictors of NIHL among the workers. The risk of developing NIHL was high even for workers who were not categorized in the high-risk group. Conclusions: In view of the findings, a precautionary approach is needed when evaluating the risk of NIHL in the study population. Vulnerable groups of workers must be protected from occupational noise hazards through the implementation of effective hearing conservation programs in the workplace.


2014 ◽  
Vol 48 (5) ◽  
pp. 790-796 ◽  
Author(s):  
Taiana Pacheco Falcão ◽  
Ronir Raggio Luiz ◽  
Gabriel Eduardo Schütz ◽  
Márcia Gomide da Silva Mello ◽  
Volney de Magalhães Câmara

OBJECTIVE To evaluate the audiometric profile of civilian pilots according to the noise exposure level. METHODS This observational cross-sectional study evaluated 3,130 male civilian pilots aged between 17 and 59 years. These pilots were subjected to audiometric examinations for obtaining or revalidating the functional capacity certificate in 2011. The degree of hearing loss was classified as normal, suspected noise-induced hearing loss, and no suspected hearing loss with other associated complications. Pure-tone air-conduction audiometry was performed using supra-aural headphones and acoustic stimulus of the pure-tone type, containing tone thresholds of frequencies between 250 Hz and 6,000 Hz. The independent variables were professional categories, length of service, hours of flight, and right or left ear. The dependent variable was pilots with suspected noise-induced hearing loss. The noise exposure level was considered low/medium or high, and the latter involved periods > 5,000 flight hours and > 10 years of flight service. RESULTS A total of 29.3% pilots had suspected noise-induced hearing loss, which was bilateral in 12.8% and predominant in the left ear (23.7%). The number of pilots with suspected hearing loss increased as the noise exposure level increased. CONCLUSIONS Hearing loss in civilian pilots may be associated with noise exposure during the period of service and hours of flight.


2020 ◽  
Vol 21 (12) ◽  
pp. 1216-1224
Author(s):  
Fatemeh Forouzanfar ◽  
Samira Asgharzade

Noise exposure (NE) has been recognized as one of the causes of sensorineural hearing loss (SNHL), which can bring about irreversible damage to sensory hair cells in the cochlea, through the launch of oxidative stress pathways and inflammation. Accordingly, determining the molecular mechanism involved in regulating hair cell apoptosis via NE is essential to prevent hair cell damage. However, the role of microRNAs (miRNAs) in the degeneration of sensory cells of the cochlea during NE has not been so far uncovered. Thus, the main purpose of this study was to demonstrate the regulatory role of miRNAs in the oxidative stress pathway and inflammation induced by NE. In this respect, articles related to noise-induced hearing loss (NIHL), oxidative stress, inflammation, and miRNA from various databases of Directory of Open Access Journals (DOAJ), Google Scholar, PubMed; Library, Information Science & Technology Abstracts (LISTA), and Web of Science were searched and retrieved. The findings revealed that several studies had suggested that up-regulation of miR-1229-5p, miR-451a, 185-5p, 186 and down-regulation of miRNA-96/182/183 and miR-30b were involved in oxidative stress and inflammation which could be used as biomarkers for NIHL. There was also a close relationship between NIHL and miRNAs, but further research is required to prove a causal association between miRNA alterations and NE, and also to determine miRNAs as biomarkers indicating responses to NE.


Author(s):  
David C. Byrne ◽  
Thais C. Morata

Exposure to industrial noise and the resulting effect of occupational hearing loss is a common problem in nearly all industries. This chapter describes industrial noise exposure, its assessment, and hearing disorders that result from overexposure to noise. Beginning with the properties of sound, noise-induced hearing loss and other effects of noise exposure are discussed. The impact of hearing disorders and the influence of other factors on hearing loss are described. Typically, noise-induced hearing loss develops slowly, and usually goes unnoticed until a significant impairment has occurred. Fortunately, occupational hearing loss is nearly always preventable. Therefore, this chapter gives particular attention to recommendations for measures to prevent occupational hearing loss such as engineering noise controls and hearing protection devices.


Marine Drugs ◽  
2021 ◽  
Vol 19 (8) ◽  
pp. 443
Author(s):  
Hyunjun Woo ◽  
Min-Kyung Kim ◽  
Sohyeon Park ◽  
Seung-Hee Han ◽  
Hyeon-Cheol Shin ◽  
...  

One of the well-known causes of hearing loss is noise. Approximately 31.1% of Americans between the ages of 20 and 69 years (61.1 million people) have high-frequency hearing loss associated with noise exposure. In addition, recurrent noise exposure can accelerate age-related hearing loss. Phlorofucofuroeckol A (PFF-A) and dieckol, polyphenols extracted from the brown alga Ecklonia cava, are potent antioxidant agents. In this study, we investigated the effect of PFF-A and dieckol on the consequences of noise exposure in mice. In 1,1-diphenyl-2-picrylhydrazyl assay, dieckol and PFF-A both showed significant radical-scavenging activity. The mice were exposed to 115 dB SPL of noise one single time for 2 h. Auditory brainstem response(ABR) threshold shifts 4 h after 4 kHz noise exposure in mice that received dieckol were significantly lower than those in the saline with noise group. The high-PFF-A group showed a lower threshold shift at click and 16 kHz 1 day after noise exposure than the control group. The high-PFF-A group also showed higher hair cell survival than in the control at 3 days after exposure in the apical turn. These results suggest that noise-induced hair cell damage in cochlear and the ABR threshold shift can be alleviated by dieckol and PFF-A in the mouse. Derivatives of these compounds may be applied to individuals who are inevitably exposed to noise, contributing to the prevention of noise-induced hearing loss with a low probability of adverse effects.


2021 ◽  
Vol 10 (2) ◽  
pp. 93
Author(s):  
Wei Xie ◽  
Xiaoshuang Li ◽  
Wenbin Jian ◽  
Yang Yang ◽  
Hongwei Liu ◽  
...  

Landslide susceptibility mapping (LSM) could be an effective way to prevent landslide hazards and mitigate losses. The choice of conditional factors is crucial to the results of LSM, and the selection of models also plays an important role. In this study, a hybrid method including GeoDetector and machine learning cluster was developed to provide a new perspective on how to address these two issues. We defined redundant factors by quantitatively analyzing the single impact and interactive impact of the factors, which was analyzed by GeoDetector, the effect of this step was examined using mean absolute error (MAE). The machine learning cluster contains four models (artificial neural network (ANN), Bayesian network (BN), logistic regression (LR), and support vector machines (SVM)) and automatically selects the best one for generating LSM. The receiver operating characteristic (ROC) curve, prediction accuracy, and the seed cell area index (SCAI) methods were used to evaluate these methods. The results show that the SVM model had the best performance in the machine learning cluster with the area under the ROC curve of 0.928 and with an accuracy of 83.86%. Therefore, SVM was chosen as the assessment model to map the landslide susceptibility of the study area. The landslide susceptibility map demonstrated fit with landslide inventory, indicated the hybrid method is effective in screening landslide influences and assessing landslide susceptibility.


2017 ◽  
Vol 26 (3S) ◽  
pp. 352-368 ◽  
Author(s):  
Vincent Nadon ◽  
Annelies Bockstael ◽  
Dick Botteldooren ◽  
Jérémie Voix

Purpose In spite of all the efforts to implement workplace hearing conservation programs, noise-induced hearing loss remains the leading cause of disability for North American workers. Nonetheless, an individual's susceptibility to noise-induced hearing loss can be estimated by monitoring changes in hearing status in relation to the level of ambient noise exposure. The purpose of this study was to validate an approach that could improve workplace hearing conservation practices. The approach was developed using a portable and robust system designed for noisy environments and consisted of taking continuous measurements with high temporal resolution of the health status of the inner ear using otoacoustic emissions (OAEs). Method A pilot study was conducted in a laboratory, exposing human subjects to industrial noise recordings at realistic levels. In parallel, OAEs were measured periodically using the designed OAE system as well as with a commercially available OAE system, used as a reference. Results Variations in OAE levels were analyzed and discussed along with the limitations of the reference and designed systems. Conclusions This study demonstrates that the monitoring of an individual's OAEs could be useful in monitoring temporary changes in hearing status induced by exposure to ambient noise and could be considered as a new tool for effective hearing conservation programs in the workplace.


Sign in / Sign up

Export Citation Format

Share Document