scholarly journals The Complexity of Subtree Intersection Representation of Chordal Graphs and Linear Time Chordal Graph Generation

Author(s):  
Tınaz Ekim ◽  
Mordechai Shalom ◽  
Oylum Şeker
Author(s):  
Amit Sharma ◽  
P. Venkata Subba Reddy

For a simple, undirected graph [Formula: see text], a function [Formula: see text] which satisfies the following conditions is called an outer-independent total Roman dominating function (OITRDF) of [Formula: see text] with weight [Formula: see text]. (C1) For all [Formula: see text] with [Formula: see text] there exists a vertex [Formula: see text] such that [Formula: see text] and [Formula: see text], (C2) The induced subgraph with vertex set [Formula: see text] has no isolated vertices and (C3) The induced subgraph with vertex set [Formula: see text] is independent. For a graph [Formula: see text], the smallest possible weight of an OITRDF of [Formula: see text] which is denoted by [Formula: see text], is known as the outer-independent total Roman domination number of [Formula: see text]. The problem of determining [Formula: see text] of a graph [Formula: see text] is called minimum outer-independent total Roman domination problem (MOITRDP). In this article, we show that the problem of deciding if [Formula: see text] has an OITRDF of weight at most [Formula: see text] for bipartite graphs and split graphs, a subclass of chordal graphs is NP-complete. We also show that MOITRDP is linear time solvable for connected threshold graphs and bounded treewidth graphs. Finally, we show that the domination and outer-independent total Roman domination problems are not equivalent in computational complexity aspects.


1993 ◽  
Vol 2 (4) ◽  
pp. 409-415 ◽  
Author(s):  
Paul Erdős ◽  
Edward T. Ordman ◽  
Yechezkel Zalcstein

To partition the edges of a chordal graph on n vertices into cliques may require as many as n2/6 cliques; there is an example requiring this many, which is also a threshold graph and a split graph. It is unknown whether this many cliques will always suffice. We are able to show that (1 − c)n2/4 cliques will suffice for some c > 0.


Author(s):  
Min-Sheng Lin

Counting dominating sets (DSs) in a graph is a #P-complete problem even for chordal bipartite graphs and split graphs, which are both subclasses of weakly chordal graphs. This paper investigates this problem for distance-hereditary graphs, which is another known subclass of weakly chordal graphs. This work develops linear-time algorithms for counting DSs and their two variants, total DSs and connected DSs in distance-hereditary graphs.


Algorithms ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 140 ◽  
Author(s):  
Asahi Takaoka

The Hamiltonian cycle reconfiguration problem asks, given two Hamiltonian cycles C 0 and C t of a graph G, whether there is a sequence of Hamiltonian cycles C 0 , C 1 , … , C t such that C i can be obtained from C i − 1 by a switch for each i with 1 ≤ i ≤ t , where a switch is the replacement of a pair of edges u v and w z on a Hamiltonian cycle with the edges u w and v z of G, given that u w and v z did not appear on the cycle. We show that the Hamiltonian cycle reconfiguration problem is PSPACE-complete, settling an open question posed by Ito et al. (2011) and van den Heuvel (2013). More precisely, we show that the Hamiltonian cycle reconfiguration problem is PSPACE-complete for chordal bipartite graphs, strongly chordal split graphs, and bipartite graphs with maximum degree 6. Bipartite permutation graphs form a proper subclass of chordal bipartite graphs, and unit interval graphs form a proper subclass of strongly chordal graphs. On the positive side, we show that, for any two Hamiltonian cycles of a bipartite permutation graph and a unit interval graph, there is a sequence of switches transforming one cycle to the other, and such a sequence can be obtained in linear time.


2006 ◽  
Vol 17 (05) ◽  
pp. 1129-1141 ◽  
Author(s):  
HUAMING ZHANG ◽  
XIN HE

Well-orderly tree is a powerful technique capable of deriving new results in graph encoding, graph enumeration and graph generation [3, 5]. In this paper, by using well-orderly trees, we prove that any plane graph G with n vertices has a visibility representation with height [Formula: see text], which can be constructed in linear time. This improves the best previous bound of [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document