Weighted Feature Pyramid Network for One-Stage Object Detection

Author(s):  
Xiaobo Tu ◽  
Yongzhao Zhan
Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3341 ◽  
Author(s):  
Hilal Tayara ◽  
Kil Chong

Object detection in very high-resolution (VHR) aerial images is an essential step for a wide range of applications such as military applications, urban planning, and environmental management. Still, it is a challenging task due to the different scales and appearances of the objects. On the other hand, object detection task in VHR aerial images has improved remarkably in recent years due to the achieved advances in convolution neural networks (CNN). Most of the proposed methods depend on a two-stage approach, namely: a region proposal stage and a classification stage such as Faster R-CNN. Even though two-stage approaches outperform the traditional methods, their optimization is not easy and they are not suitable for real-time applications. In this paper, a uniform one-stage model for object detection in VHR aerial images has been proposed. In order to tackle the challenge of different scales, a densely connected feature pyramid network has been proposed by which high-level multi-scale semantic feature maps with high-quality information are prepared for object detection. This work has been evaluated on two publicly available datasets and outperformed the current state-of-the-art results on both in terms of mean average precision (mAP) and computation time.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1654
Author(s):  
Xiaoliang Zhang ◽  
Kehe Wu ◽  
Qi Ma ◽  
Zuge Chen

As the object detection dataset scale is smaller than the image recognition dataset ImageNet scale, transfer learning has become a basic training method for deep learning object detection models, which pre-trains the backbone network of the object detection model on an ImageNet dataset to extract features for detection tasks. However, the classification task of detection focuses on the salient region features of an object, while the location task of detection focuses on the edge features, so there is a certain deviation between the features extracted by a pretrained backbone network and those needed by a localization task. To solve this problem, a decoupled self-attention (DSA) module is proposed for one-stage object-detection models in this paper. A DSA includes two decoupled self-attention branches, so it can extract appropriate features for different tasks. It is located between the Feature Pyramid Networks (FPN) and head networks of subtasks, and used to independently extract global features for different tasks based on FPN-fused features. Although the DSA network module is simple, it can effectively improve the performance of object detection, and can easily be embedded in many detection models. Our experiments are based on the representative one-stage detection model RetinaNet. In the Common Objects in Context (COCO) dataset, when ResNet50 and ResNet101 are used as backbone networks, the detection performances can be increased by 0.4 and 0.5% AP, respectively. When the DSA module and object confidence task are both applied in RetinaNet, the detection performances based on ResNet50 and ResNet101 can be increased by 1.0 and 1.4% AP, respectively. The experiment results show the effectiveness of the DSA module.


2021 ◽  
Author(s):  
Shuqi Xiong ◽  
Xiaohong Wu ◽  
Honggang Chen ◽  
Linbo Qing ◽  
Tong Chen ◽  
...  

Author(s):  
Na Dong ◽  
Yongqiang Zhang ◽  
Mingli Ding ◽  
Shibiao Xu ◽  
Yancheng Bai

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Chengyang Wang ◽  
Caiming Zhong

Sign in / Sign up

Export Citation Format

Share Document