PSO Based H∞ PID Controller for a 2nd Order Time Delay System

Author(s):  
Krishna Kumar ◽  
Debasish Mondal
2013 ◽  
Vol 313-314 ◽  
pp. 432-437
Author(s):  
Fu Min Peng ◽  
Bin Fang

Based on the inverse Nyquist plot, this paper proposes a method to determine stabilizing gain regions of PID controller for time delay systems. According to the frequency characteristic of the inverse Nyquist plot, it is confirmed that the frequency range is used for stability analysis, and the abscissas of two kind key points are obtained in this range. PID gain is divided into several regions by abscissas of key points. Using an inference and two theorems presented in the paper, the stabilizing PID gain regions are determined by the number of intersections of the inverse Nyquist plot and the vertical line in the frequency range. This method is simple and convenient. It can solve the problem of getting the stabilizing gain regions of PID controller for time delay system.


2014 ◽  
Vol 602-605 ◽  
pp. 1186-1189
Author(s):  
Dong Sheng Wu ◽  
Qing Yang

Aiming at the phenomena of big time delay are normally existing in industry control, this paper proposes an intelligent GA-Smith-PID control method based on genetic algorithm and Smith predictive compensation algorithm and traditional PID controller. This method uses the ability of on line-study, a self-turning control strategy of GA, and better control of Smith predictive compensation to deal with the big time delay. This method overcomes the limitation of traditional PID control effectively, and improves the system’s robustness and self-adaptability, and gets satisfactory control to deal with the big time delay system.


Sign in / Sign up

Export Citation Format

Share Document