Stabilizing Gain Regions of PID Controller for Time Delay Systems

2013 ◽  
Vol 313-314 ◽  
pp. 432-437
Author(s):  
Fu Min Peng ◽  
Bin Fang

Based on the inverse Nyquist plot, this paper proposes a method to determine stabilizing gain regions of PID controller for time delay systems. According to the frequency characteristic of the inverse Nyquist plot, it is confirmed that the frequency range is used for stability analysis, and the abscissas of two kind key points are obtained in this range. PID gain is divided into several regions by abscissas of key points. Using an inference and two theorems presented in the paper, the stabilizing PID gain regions are determined by the number of intersections of the inverse Nyquist plot and the vertical line in the frequency range. This method is simple and convenient. It can solve the problem of getting the stabilizing gain regions of PID controller for time delay system.

2001 ◽  
Vol 7 (5) ◽  
pp. 455-484 ◽  
Author(s):  
Magdi S. Mahmoud ◽  
Lihua Xie

In this paper, we investigate the robust passivity analysis and synthesis problems for a class of uncertain time-delay systems. This class of systems arises in the modelling effort of studying water quality constituents in fresh stream. For the analysis problem, we derive a sufficient condition for which the uncertain time-delay system is robustly stable and strictly passive for all admissible uncertainties. The condition is given in terms of a linear matrix inequality. Both the delay-independent and delay-dependent cases are considered. For the synthesis problem, we propose an observer-based design method which guarantees that the closed-loop uncertain time-delay system is stable and strictly passive for all admissible uncertainties. Several examples are worked out to illustrate the developed theory.


Author(s):  
Marwen Kermani ◽  
Anis Sakly

This chapter focuses on the stability analysis problem for a class of continuous-time switched time-delay systems modelled by delay differential equations under arbitrary switching. Then, a transformation under the arrow form is employed. Indeed, by using a constructed Lyapunov function, the aggregation techniques, the Kotelyanski lemma associated with the M-matrix properties, new delay-dependent sufficient stability conditions are derived. The obtained results provide a solution to one of the basic problems in continuous-time switched time-delay systems. This problem ensures asymptotic stability of the switched time-delay system under arbitrary switching signals. In addition, these stability conditions are extended to be generalized for switched systems with multiple delays. Noted that, these obtained results are explicit, simple to use, and allow us to avoid the problem of searching a common Lyapunov function. Finally, two examples are provided, with numerical simulations, to demonstrate the effectiveness of the proposed method.


Author(s):  
Niraj Choudhary ◽  
Janardhanan Sivaramakrishnan ◽  
Indra Narayan Kar

In this note, the analysis of time delay systems (TDSs) using Lambert W function approach is reassessed. A common canonical (CC) form of time delay systems is defined. We extended the recent results of Cepeda–Gomez and Michiels (2015, “Some Special Cases in the Stability Analysis of Multi-Dimensional Time-Delay Systems Using the Matrix Lambert W Function,” Automatica, 53, pp. 339–345) for second-order into nth order system. The eigenvalues of a time delay system are either real or complex conjugate pairs and therefore, the whole eigenspectrum can be associated with only two real branches of the Lambert W function. A new class of time delay systems is characterized to extend the applicability of the above-said method. Moreover, this approach has been exploited to design a controller which places a subset of eigenvalues at desired locations. Stability is guaranteed by using a new algorithm developed in this paper, which is based on the Nyquist plot. The approach is validated through numerical examples.


Nowadays, the PID controller is very common controller as well as very important controller in industrial utilizations. In the paper, proposed an ALO algorithm and ANN controller is utilized to enhance PID controller performance and control the tuning of TDS. TDS stands for Time delay system. ALO stands for Ant lion optimizer and ANN stands for Artificial neural network. In terms of parameters controlling, the time delay system is controlled and for different delay events low overshoot and fast time settling is reached. The novelty of the presented method is enhancing the PID controller performance by optimizing the PID gain parameters and controlling the highorder TDS. The performance of time delay system can be enhanced through decreasing error, tracking, time delay & error, rapid and exactly for their corresponding reference values. For parameter controlling of time delay system along optimal values, can be significantly enhanced the performance. To analyze the characteristics of the presented method, the various time delay systems are analyzed. The input and gain parameters were utilized to evaluate the objective function from tuning system. Based on proposed method, the optimal result is achieved and evaluated the increae time, settling time, overshoot as well as steady state error in TDS. The suggested controller is executed in MATLAB/Simulink work site and the presented technique performance examined through performance indexes and time domain specifications are evaluated using presented method compared to previous methods like ABC (Artificial Bee colony) algorithm, GSA (Gravitational Search Algorithm) ,FA (Firefly Algorithm).


2006 ◽  
Vol 129 (1) ◽  
pp. 83-90 ◽  
Author(s):  
Shinn-Horng Chen ◽  
Jyh-Horng Chou ◽  
Liang-An Zheng

In this paper, the regional eigenvalue-clustering robustness problem of linear discrete singular time-delay systems with structured (elemental) parameter uncertainties is investigated. Under the assumptions that the linear nominal discrete singular time-delay system is regular and causal, and has all its finite eigenvalues lying inside certain specified regions, two new sufficient conditions are proposed to preserve the assumed properties when the structured parameter uncertainties are added into the linear nominal discrete singular time-delay system. When all the finite eigenvalues are just required to locate inside the unit circle, the proposed criteria will become the stability robustness criteria. For the case of eigenvalue clustering in a specified circular region, one proposed sufficient condition is mathematically proved to be less conservative than those reported very recently in the literature. Another new sufficient condition is also proposed for guaranteeing that the linear discrete singular time-delay system with both structured (elemental) and unstructured (norm-bounded) parameter uncertainties holds the properties of regularity, causality, and eigenvalue clustering in a specified region. An example is given to demonstrate the applicability of the proposed sufficient conditions.


2012 ◽  
Vol 182-183 ◽  
pp. 1255-1259 ◽  
Author(s):  
Jin Feng Gao ◽  
Jia Ren ◽  
Chuang Meng

Some new results of delay-dependent stabilization for linear singular time-delay systems are presented. And the time delay considered here is assumed to be constant but unknown. By using a new Lyapunov-krasovskii functional which splits the whole delay interval into two subintervals and defines a different energy function on each subinterval, a sufficient delay-dependent condition is obtained for the singular time-delay system to be regular, impulse free and stable.


2019 ◽  
Vol 484 (5) ◽  
pp. 538-541
Author(s):  
A. V. Il’in ◽  
E. I. Atamas ◽  
V. V. Fomichev

An inversion problem for LTI hyperoutput time-delay system is considered. For such systems canonical form with isolated zero dynamics is obtained, system invariant zeros and their relation to spectral observability of zero dynamics subsystem are investigated. Using this results, inversion algorithm is suggested for time-delay systems.


2021 ◽  
Vol 16 ◽  
pp. 519-526
Author(s):  
Dušan Krokavec ◽  
Anna Filasová

The relationships among structural constraints and involvement of the design condition are studied to synthesize state control for one class of linear strictly Metzler time-delay systems. These characterizations reflect the specific dynamical and structural attributes of the system class and outline the associated structures of linear matrix inequalities. Adjusting diagonal forms of linear matrix variables it is indicated how the proposed method gives a computable technique for the Metzler time-delay system, guaranteeing stabilising effect through implicit diagonal stabilization. The aim of this research is to describe conditions tying together inequality formulations and concepts of control theory in structures of Metzler systems


2010 ◽  
Vol 44-47 ◽  
pp. 3839-3843
Author(s):  
Wen Bo Liu ◽  
Meng Xiao Wang

A nonlinear PID control method based on Smith predictor is presented in this paper to control the time delay systems. This method combines the Smith predictor with nonlinear controller. And the simulation study had been done for a first-order time-delay system. The results show that this method offer good static and dynamic characteristics, at the same time its disturbance-rejection and robustness are better.


Sign in / Sign up

Export Citation Format

Share Document