A MILP Model for Biological Sample Transportation in Healthcare

Author(s):  
Mario Benini ◽  
Paolo Detti ◽  
Garazi Zabalo Manrique de Lara
Keyword(s):  
Author(s):  
Rebecca W. Keller ◽  
Carlos Bustamante ◽  
David Bear

Under ideal conditions, the Scanning Tunneling Microscope (STM) can create atomic resolution images of different kinds of samples. The STM can also be operated in a variety of non-vacuum environments. Because of its potentially high resolution and flexibility of operation, it is now being applied to image biological systems. Several groups have communicated the imaging of double and single stranded DNA.However, reproducibility is still the main problem with most STM results on biological samples. One source of irreproducibility is unreliable sample preparation techniques. Traditional deposition methods used in electron microscopy, such as glow discharge and spreading techniques, do not appear to work with STM. It seems that these techniques do not fix the biological sample strongly enough to the substrate surface. There is now evidence that there are strong forces between the STM tip and the sample and, unless the sample is strongly bound to the surface, it can be swept aside by the tip.


Energy ◽  
2021 ◽  
pp. 121015
Author(s):  
Ziqi Shen ◽  
Wei Wei ◽  
Lei Wu ◽  
Miadreza Shafie-khah ◽  
João P.S. Catalão

Author(s):  
Bibiana P. Ferraz ◽  
Mariana Resener ◽  
Luís A. Pereira ◽  
Flávio A.B. Lemos ◽  
Sérgio Haffner

1997 ◽  
Vol 3 (S2) ◽  
pp. 1081-1082
Author(s):  
I. Angert ◽  
W. Jahn ◽  
K.C. Holmes ◽  
R.R. Schröder

Understanding the contrast formation mechanism in the EM is one of the prerequisites for artefact-free reconstruction of biological structures from images. We found that the normally used correction of contrast formation applied to zero energy loss filtered images corrupted spatial resolution. Therefore the contribution of contrast formed by inelastic electrons was reconsidered, including partial coherence of inelastically scattered electrons and lens aberrations of the microscope. Based on this, a complete description of the zero-loss contrast transfer function (CTF) is now possible.We used tobacco mosaic virus (TMV), a biological sample known at atomic resolution, for definition of optimum CTF-parameters to reconstruct defocus series from an EFTEM LEO 912. CTF theory as known so far describes image contrast in the weak phase approximation as a linear sum of amplitude and phase contrast. The contribution of amplitude contrast (ratio of amplitude to phase contrast A/P) was determined to be between 7% and 5 % for unfiltered images and 12-14 % for zero-loss filtered images. However, in a filter microscope we remove electrons from the image, so we expect a higher amplitude contrast than in non-filtered images.


2020 ◽  
Vol 24 ◽  
pp. 101002 ◽  
Author(s):  
Tássia Venga Mendes ◽  
Lidiane Silva Franqui ◽  
Mariane Gonçalves Santos ◽  
Célio Wisniewski ◽  
Eduardo Costa Figueiredo

2014 ◽  
Vol 18 (1) ◽  
pp. 68-74 ◽  
Author(s):  
Johanna C Gerdessen ◽  
Olga W Souverein ◽  
Pieter van ‘t Veer ◽  
Jeanne HM de Vries

AbstractObjectiveTo support the selection of food items for FFQs in such a way that the amount of information on all relevant nutrients is maximised while the food list is as short as possible.DesignSelection of the most informative food items to be included in FFQs was modelled as a Mixed Integer Linear Programming (MILP) model. The methodology was demonstrated for an FFQ with interest in energy, total protein, total fat, saturated fat, monounsaturated fat, polyunsaturated fat, total carbohydrates, mono- and disaccharides, dietary fibre and potassium.ResultsThe food lists generated by the MILP model have good performance in terms of length, coverage and R2 (explained variance) of all nutrients. MILP-generated food lists were 32–40 % shorter than a benchmark food list, whereas their quality in terms of R2 was similar to that of the benchmark.ConclusionsThe results suggest that the MILP model makes the selection process faster, more standardised and transparent, and is especially helpful in coping with multiple nutrients. The complexity of the method does not increase with increasing number of nutrients. The generated food lists appear either shorter or provide more information than a food list generated without the MILP model.


Sign in / Sign up

Export Citation Format

Share Document