CE Analysis of Trace Level Biological Sample Using Online Sample Preconcentration Method

2015 ◽  
Vol 59 (2) ◽  
pp. 91-93
Author(s):  
Takayuki Kawai
Desalination ◽  
2011 ◽  
Vol 281 ◽  
pp. 215-220 ◽  
Author(s):  
Sumaira Khan ◽  
Tasneem G. Kazi ◽  
Nida F. Kolachi ◽  
Jameel A. Baig ◽  
Hassan I. Afridi ◽  
...  

Author(s):  
Rebecca W. Keller ◽  
Carlos Bustamante ◽  
David Bear

Under ideal conditions, the Scanning Tunneling Microscope (STM) can create atomic resolution images of different kinds of samples. The STM can also be operated in a variety of non-vacuum environments. Because of its potentially high resolution and flexibility of operation, it is now being applied to image biological systems. Several groups have communicated the imaging of double and single stranded DNA.However, reproducibility is still the main problem with most STM results on biological samples. One source of irreproducibility is unreliable sample preparation techniques. Traditional deposition methods used in electron microscopy, such as glow discharge and spreading techniques, do not appear to work with STM. It seems that these techniques do not fix the biological sample strongly enough to the substrate surface. There is now evidence that there are strong forces between the STM tip and the sample and, unless the sample is strongly bound to the surface, it can be swept aside by the tip.


1998 ◽  
Author(s):  
Rebecca A. Clewell ◽  
Wayne T. Brashear ◽  
David T. Tsui ◽  
Sanwat Chaudhuri ◽  
Rachel S. Cassady

The Analyst ◽  
2021 ◽  
Author(s):  
Jialin Yang ◽  
Ding Wang ◽  
Ming Li ◽  
Haitao Yu ◽  
Pengcheng Xu ◽  
...  

The trace-level detection to harmful NO2 gas at room-temperature is very important for environmental protection and public health. This paper reports the resonant-gravimetric detection of ppb-level NO2 at room-temperature using...


Author(s):  
Kempahanumakkagaari Sureshkumar ◽  
Thippeswamy Ramakrishnappa ◽  
Malingappa Pandurangappa

Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 558
Author(s):  
Hwee-Yeong Ng ◽  
Wen-Chin Lee ◽  
Chia-Te Kung ◽  
Lung-Chih Li ◽  
Chien-Te Lee ◽  
...  

Milk is a necessity for human life. However, it is susceptible to contamination and adulteration. Microfluidic analysis devices have attracted significant attention for the high-throughput quality inspection and contaminant analysis of milk samples in recent years. This review describes the major proposals presented in the literature for the pretreatment, contaminant detection, and quality inspection of milk samples using microfluidic lab-on-a-chip and lab-on-paper platforms in the past five years. The review focuses on the sample separation, sample extraction, and sample preconcentration/amplification steps of the pretreatment process and the determination of aflatoxins, antibiotics, drugs, melamine, and foodborne pathogens in the detection process. Recent proposals for the general quality inspection of milk samples, including the viscosity and presence of adulteration, are also discussed. The review concludes with a brief perspective on the challenges facing the future development of microfluidic devices for the analysis of milk samples in the coming years.


Sign in / Sign up

Export Citation Format

Share Document