Energy Efficiency of Electric Vacuum Systems: Induction Motor – Water Ring Pump with an Ejector

Author(s):  
A. R. Denisova ◽  
A. I. Rudakov ◽  
N. V. Rozhentcova
2019 ◽  
Vol 8 (2S11) ◽  
pp. 2515-2521

Most customarily used motor in the industries are induction motor due to its low cost, robustness and less maintenance. The change in the existing framework is necessary in order to make the motor more efficient one. This paper cast enlightenment about the PLC based 3 phase multi-starter control induction motor with energy efficient single control system. In order to start the engine's operation by its own power, starters are used. Various starters are available to initiate the 3-phase induction motor namely Direct On-line, Star-delta, autotransformer and rotor impedance. The employment of this PLC based techniques helps to increase the energy efficiency of the motor .The employability of PLC in this system is to help in the growth of automation. The hardware and software results of the multi starter control using single control systems are analysed


2021 ◽  
Vol 2131 (4) ◽  
pp. 042085
Author(s):  
T S Titova ◽  
A M Evstaf’ev ◽  
A A Pugachev

Abstract The review of technical solutions and schematic characteristics of auxiliary drives for traction vehicles has shown that the most rational variant is an electric drive with an induction machine. Given the operating modes of the auxiliary drives and the share of their power consumption in the total locomotive power, the task of using scalar control systems for induction machines becomes relevant. Based on a mathematical model describing the dynamic energy conversion processes in the T-shape substitution circuit of an induction motor, taking into account stator steel losses and current displacement effects in the rotor winding and saturation along the main magnetic path, possibilities for reducing stator current have been investigated. In order to improve the energy efficiency of electric drives two variants of control system have been proposed. One based on search method of self-tuning to the stator current minimum and the other - on maintaining the power factor of induction motor at the level that ensures equality of active and reactive components of stator current. The hardware and software requirements for implementing control systems have been analysed. Modelling using Matlab has shown that both control systems work - power loss reduction can be as low as 50% and as high as 60% in certain modes.


Author(s):  
Yanawati Yahya ◽  
Mohd Khairil Rahmat

<span lang="EN-MY">Nowadays, the rotating motor is the most demoralized machine for the global Motor industry. Comfort of practice, start-up, small, weightiness, Increased efficiency, low maintenance and inexpensive for each power rating that generally meets the necessary features for industries. Efficient improvements are inspected with copper for the rotor bars slot. Usually, the copper loss in the induction motor Rotor division contributes to the loss of energy. The research work was planned a new rotor design, by improved rotor bars type slot, size and design. These tasks were inspected using two approaches, in particular, MotorSolve (IM) and calculations in theory. One set of simulation has shown a significant increase in energy efficiency for a new rotor frame design. Calculations in theory are used MATLAB. As a result, these new designs have improved energy efficiency by 77% as compared to its 74% existing design. The results proved to be using MATLAB. For energy, cost savings and emission reduction (ER), new design rotor frame has been saved 154KWH/year, utility bill RM 60.20/Year and 0.113 CO<sub>2 </sub>tons/years intended for individually motor. Finally, the estimated cost aimed at 100,000 pieces of new rotor bars pattern induction motor and indicates this price was kept almost RM6 million.</span>


Sign in / Sign up

Export Citation Format

Share Document