Small Scale Test to Measure the Strength of Adhesives at Elevated Temperatures for Use in Evaluating Adhesives for Cross Laminated Timber (CLT)

2020 ◽  
pp. 3-8
Author(s):  
Samuel L. Zelinka ◽  
Byrne Miyamoto ◽  
Nathan J. Bechle ◽  
Douglas Rammer
2019 ◽  
Vol 95 ◽  
pp. 102436 ◽  
Author(s):  
Samuel L. Zelinka ◽  
Ken Sullivan ◽  
Shiling Pei ◽  
Noah Ottum ◽  
Nathan J. Bechle ◽  
...  

2010 ◽  
Author(s):  
Jon La Follett ◽  
John Stroud ◽  
Pat Malvoso ◽  
Joseph Lopes ◽  
Raymond Lim ◽  
...  

2020 ◽  
Author(s):  
Changjun Cheng ◽  
Yuan Xiao ◽  
Michel J.R. Haché ◽  
Zhiying Liu ◽  
Alla S. Sologubenko ◽  
...  

Toxins ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 646 ◽  
Author(s):  
García-Díaz ◽  
Patiño ◽  
Vázquez ◽  
Gil-Serna

Aflatoxin (AF) contamination of maize is a major concern for food safety. The use of chemical fungicides is controversial, and it is necessary to develop new effective methods to control Aspergillus flavus growth and, therefore, to avoid the presence of AFs in grains. In this work, we tested in vitro the effect of six essential oils (EOs) extracted from aromatic plants. We selected those from Satureja montana and Origanum virens because they show high levels of antifungal and antitoxigenic activity at low concentrations against A. flavus. EOs are highly volatile compounds and we have developed a new niosome-based encapsulation method to extend their shelf life and activity. These new formulations have been successfully applied to reduce fungal growth and AF accumulation in maize grains in a small-scale test, as well as placing the maize into polypropylene woven bags to simulate common storage conditions. In this latter case, the antifungal properties lasted up to 75 days after the first application.


2010 ◽  
Author(s):  
O. Ciricosta ◽  
L. Labate ◽  
S. Atzeni ◽  
A. Barbini ◽  
D. Batani ◽  
...  
Keyword(s):  

2012 ◽  
Vol 249-250 ◽  
pp. 1057-1062
Author(s):  
M. Zeinoddini ◽  
S.A. Hosseini ◽  
M. Daghigh ◽  
S. Arnavaz

Previous researchers have tried to predict the response of different types of structures under elevated temperatures. The results are important in preventing the collapse of buildings in fire. Post-fire status of the structures is also of interest for ensuring the safety of rescue workers during the fire and in the post-fire situations. Determining the extent of the structural damage left behind a fire event is necessary to draw up adequate repair plans. Connections play an important role on the fire performance of different structures. Due to the high cost of fire tests, adequate experimental data about a broad range of connections is not available. A vulnerable type of such connections to fire is the weld connections between I-shape beams and cylindrical columns in oil platform topsides. Considering the high probability of fire in oil platforms, study of the behaviour of these connections at elevated temperatures and in the post-fire, is of great importance. In the current study, eight small scale experimental fire tests on welded connections between I-shape beams and cylindrical columns have been conducted. Four tests are aimed at investigating the structural performance of this connection at elevated temperature. In other tests, post-fire behaviour of these connections has been studied to investigate their residual structural strength.


Author(s):  
Richard Clements ◽  
Andrew D. Ethridge

This paper describes further investigations, utilising small scale test cells, into the general corrosion which can occur on wires within the inherent annulus space in a flexible pipe, particularly, and for the first time, in a sour service (H2S containing) environment. The work enhances data presented previously in 2002. Tests have been performed in cells specifically designed to simulate, as closely as possible, the environment and confines of a flexible pipe annulus, using solutions of both deionized water and seawater (to represent seawater flooding and condensed water). The systems were saturated with CO2 and H2S to simulate permeation of gases through the polymer pressure sheath (as predicted by validated permeation models). Weight loss measurements were undertaken in order to quantify the corrosion rate in these simulated annulus environments and metallography was undertaken to characterise the corrosion and check for HIC/SOHIC.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Seied Ahmad Hosseini ◽  
Mostafa Zeinoddini

PurposeIn this paper, a closed-form analytical solution for the prediction of moment-rotation and the rotational stiffness-rotation curves of I-shaped beam to cylindrical column connections, commonly used on offshore platforms, at room and elevated temperatures, are presented.Design/methodology/approachAn analytical solution for the prediction of moment-rotation and the rotational stiffness-rotation curves of I-shaped beam to cylindrical column connections is presented. The results of this model are compared with those of a non-linear coupled mechanical-thermal finite element model and small-scale experimental tests previously provided by the authors.FindingsIn this paper, a closed-form analytical solution for the prediction of moment-rotation and the rotational stiffness-rotation curves of I-shaped beam to cylindrical column connections, commonly used on offshore platforms, at room and elevated temperatures, is presented. The required yield and plastic moments in this model are provided as an extension to Roark's relationships. The results of this model are compared with those of a non-linear coupled mechanical-thermal finite element model and small-scale experimental tests previously provided by the authors. A reasonable agreement has been found between the analytical model results and the experimental/numerical modeling results.Originality/valueThis article is extracted from the author’s doctoral thesis, and all its achievements belong to the authors of the article.


2014 ◽  
Vol 72 (4) ◽  
pp. 535-545 ◽  
Author(s):  
Michael Klippel ◽  
Sebastian Clauß ◽  
Andrea Frangi

Sign in / Sign up

Export Citation Format

Share Document