Study of Multiaspect and Multistatic Sonar Systems Using a Small-Scale Test Bed

2010 ◽  
Author(s):  
Jon La Follett ◽  
John Stroud ◽  
Pat Malvoso ◽  
Joseph Lopes ◽  
Raymond Lim ◽  
...  
2010 ◽  
Vol 127 (3) ◽  
pp. 1748-1748
Author(s):  
Patrick C. Malvoso ◽  
John S. Stroud ◽  
Raymond Lim ◽  
Joseph L. Lopes ◽  
Benjamin R. Dzikowicz

Author(s):  
Stefano De Luca ◽  
Walter Quattrociocchi

In this paper we present a new agent-based model, CDYS – Complex DYnamic System, for intelligent, flexible, and context-aware multi-modal interaction on autonomous system. This model is focused on context models which facilitate the communication and the knowledge representation with an highly-customized and adaptable representation and distribution of the entities composing the environment. CDYS uses information from multiple perceptions and provides proactive real-time updates and context-specific guidance in the state representation and synthesis. Our work includes the design of interaction, evolution, context definition by states and ontologies; communication, context, task models based on these ontologies, a set of representations of perception to drive agent behavior, communication, and a compatible integration of rules and machine learning aimed to improve information retrieval and the Semantic web. Currently, we have completed the first stage of our research, producing first pass Ontologies, models, and the interaction to apply genetic algorithm to improve the global ontology, by local ontology representation, tested with an initial prototype of a small-scale test-bed on clustering for self improving of the agent’s knowledge base .Our approach is based on social systems in context-aware applications, informed by Autopoietic Systems, to use a system (an agent) that is able to describe and manage the evolution of its environment and of the knowledge base in the autopoietic based model.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Orazio Tomarchio ◽  
Domenico Calcaterra ◽  
Giuseppe Di Modica ◽  
Pietro Mazzaglia

AbstractThe growth in the number and types of cloud-based services offered to IT customers is supported by the constant entry of new actors in the market and the consolidation of disruptive technologies such as AI, Big Data and Micro-services. From the customer’s perspective, in a market landscape where the cloud offer is highly diversified due to the presence of multiple competing service providers, picking the service that best accommodate their specific needs is a critical challenge. Once the choice is made, so called “cloud orchestration tools” (orchestrators) are required to take care of the customer application’s life-cycle. While big players offer their customers proprietary orchestrators, in the literature quite a number of open-source initiatives have launched multi-cloud orchestrators capable of transparently managing applications on top of the most representative cloud platforms. In this paper, we propose TORCH, a TOSCA-based framework for the deployment and orchestration of cloud applications, both classical and containerised, on multiple cloud providers. The framework assists the cloud customer in defining application requirements by using standard specification models. Unlike other multi-cloud orchestrators, adopts a strategy that separates the provisioning workflow from the actual invocation of proprietary cloud services API. The main benefit is the possibility to add support to any cloud platforms at a very low implementation cost. In the paper, we present a prototypal implementation of TORCH and showcase its interaction with two different container-based cluster platforms. Preliminary performance tests conducted on a small-scale test-bed confirm the potential of TORCH.


2020 ◽  
Vol 103 ◽  
pp. 103192
Author(s):  
Young Cheol Park ◽  
Sung-Ho Jo ◽  
Jae-Young Kim ◽  
Yooseob Won ◽  
Hyungseok Nam ◽  
...  

Toxins ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 646 ◽  
Author(s):  
García-Díaz ◽  
Patiño ◽  
Vázquez ◽  
Gil-Serna

Aflatoxin (AF) contamination of maize is a major concern for food safety. The use of chemical fungicides is controversial, and it is necessary to develop new effective methods to control Aspergillus flavus growth and, therefore, to avoid the presence of AFs in grains. In this work, we tested in vitro the effect of six essential oils (EOs) extracted from aromatic plants. We selected those from Satureja montana and Origanum virens because they show high levels of antifungal and antitoxigenic activity at low concentrations against A. flavus. EOs are highly volatile compounds and we have developed a new niosome-based encapsulation method to extend their shelf life and activity. These new formulations have been successfully applied to reduce fungal growth and AF accumulation in maize grains in a small-scale test, as well as placing the maize into polypropylene woven bags to simulate common storage conditions. In this latter case, the antifungal properties lasted up to 75 days after the first application.


2010 ◽  
Author(s):  
O. Ciricosta ◽  
L. Labate ◽  
S. Atzeni ◽  
A. Barbini ◽  
D. Batani ◽  
...  
Keyword(s):  

Author(s):  
Richard Clements ◽  
Andrew D. Ethridge

This paper describes further investigations, utilising small scale test cells, into the general corrosion which can occur on wires within the inherent annulus space in a flexible pipe, particularly, and for the first time, in a sour service (H2S containing) environment. The work enhances data presented previously in 2002. Tests have been performed in cells specifically designed to simulate, as closely as possible, the environment and confines of a flexible pipe annulus, using solutions of both deionized water and seawater (to represent seawater flooding and condensed water). The systems were saturated with CO2 and H2S to simulate permeation of gases through the polymer pressure sheath (as predicted by validated permeation models). Weight loss measurements were undertaken in order to quantify the corrosion rate in these simulated annulus environments and metallography was undertaken to characterise the corrosion and check for HIC/SOHIC.


Author(s):  
Robert Dell ◽  
Runar Unnthorsson ◽  
C. S. Wei ◽  
William Foley

In small source power generation scenarios in industrial or remote settings a viable small electrical supply for security and monitoring systems is often problematic due to the variability of the energy sources and the stability of the power generated. These small scale systems lack the advantages of a larger power grid. Therefore peak power requirements can be beyond the power generator necessitating energy storage such as batteries. The authors have developed and documented a reliable thermoelectric generator and a test bed. The generator was combined with a battery in order to meet peak power requirements beyond the unassisted range of the generator. This paper presents a test case result with the thermoelectric generator powering a complete web accessible mobile robot system. The robot system can be used for monitoring, physical manipulation of the environment, routine maintenance and in emergencies.


Sign in / Sign up

Export Citation Format

Share Document