Heavy Metal–Induced Gene Expression in Plants

2020 ◽  
pp. 143-173
Author(s):  
Abdul Razaque Memon
Keyword(s):  
2011 ◽  
Vol 30 (1) ◽  
pp. 447-450 ◽  
Author(s):  
Chenghua Li ◽  
Lingyun Li ◽  
Feng Liu ◽  
Xuanxuan Ning ◽  
Aiqin Chen ◽  
...  

Biomolecules ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 574
Author(s):  
Marta Kaczor-Kamińska ◽  
Piotr Sura ◽  
Maria Wróbel

The investigations showed changes of the cystathionine γ-lyase (CTH), 3-mercaptopyruvate sulfurtransferase (MPST) and rhodanese (TST) activity and gene expression in the brain, heart, liver, kidney, skeletal muscles and testes in frogs Pelophylax ridibundus, Xenopus laevis and Xenopus tropicalis in response to Pb2+, Hg2+ and Cd2+ stress. The results were analyzed jointly with changes in the expression of selected antioxidant enzymes (cytoplasmic and mitochondrial superoxide dismutase, glutathione peroxidase, catalase and thioredoxin reducatase) and with the level of malondialdehyde (a product of lipid peroxidation). The obtained results allowed for confirming the role of sulfurtransferases in the antioxidant protection of tissues exposed to heavy metal ions. Our results revealed different transcriptional responses of the investigated tissues to each of the examined heavy metals. The CTH, MPST and TST genes might be regarded as heavy metal stress-responsive. The CTH gene expression up-regulation was confirmed in the liver (Pb2+, Hg2+, Cd2+) and skeletal muscle (Hg2+), MPST in the brain (Pb2+, Hg2+), kidney (Pb2+, Cd2+), skeletal muscle (Pb2+, Hg2+,Cd2+) and TST in the brain (Pb2+) and kidney (Pb2+, Hg2+, Cd2+). Lead, mercury and cadmium toxicity was demonstrated to affect the glutathione (GSH) and cysteine levels, the concentration ratio of reduced to oxidized glutathione ([GSH]/[GSSG]) and the level of sulfane sulfur-containing compounds, which in case of enhanced reactive oxygen species generation can reveal their antioxidative properties. The present report is the first to widely describe the role of the sulfane sulfur/H2S generating enzymes and the cysteine/glutathione system in Pb2+, Hg2+ and Cd2+ stress in various frog tissues, and to explore the mechanisms mediating heavy metal-related stress.


2009 ◽  
Vol 18 (15) ◽  
pp. 3227-3239 ◽  
Author(s):  
DICK ROELOFS ◽  
THIERRY K. S. JANSSENS ◽  
MARTIJN J. T. N. TIMMERMANS ◽  
BENJAMIN NOTA ◽  
JANINE MARIËN ◽  
...  

2017 ◽  
Vol 221 ◽  
pp. 64-74 ◽  
Author(s):  
Hesham M. Korashy ◽  
Ibraheem M. Attafi ◽  
Konrad S. Famulski ◽  
Saleh A. Bakheet ◽  
Mohammed M. Hafez ◽  
...  

2021 ◽  
Author(s):  
Michihito Deguchi ◽  
Shobha Potlakayala ◽  
Zachary Spuhler ◽  
Hannah George ◽  
Vijay Sheri ◽  
...  

Abstract Industrial hemp (Cannabis sativa L.) is a dioecious crop widely known for its production of phytocannabinoids, flavonoids, and terpenes. In the past two years since its legalization, there has been significant interest in researching this important crop for pharmaceutical applications. Although many scientific reports have demonstrated gene expression analysis of hemp through OMICs approaches, accurate validation of omics data cannot be performed because of lack of reliable reference genes for normalization of qRT-PCR data. The differential gene expression patterns of 13 candidate reference genes under osmotic, heavy metal, hormonal, and UV stress were evaluated through four software packages: geNorm, NormFinder, BestKeeper, and RefFinder. The EF-1a ranked as the most stable reference gene across all stresses, TUB was the most stable under osmotic stress, and TATA was the most stable under both heavy metal and hormonal stress. The expression profiles of two cannabinoid pathway genes, AAE1 and THCAS, using the two most stable and single least stable reference genes confirmed that two most stables genes were apt for normalization of gene expression data. This work will contribute to the future studies on the expression analysis of hemp genes regulating the synthesis, transport and accumulation of secondary metabolites.


Sign in / Sign up

Export Citation Format

Share Document