A Patch - Based Analysis for Retinal Lesion Segmentation with Deep Neural Networks

Author(s):  
A Mary Dayana ◽  
W. R. Sam Emmanuel
Author(s):  
Magdalena Michalska

The article provides an overview of selected applications of deep neural networks in the diagnosis of skin lesions from human dermatoscopic images, including many dermatological diseases, including very dangerous malignant melanoma. The lesion segmentation process, features selection and classification was described. Application examples of binary and multiclass classification are given. The described algorithms have been widely used in the diagnosis of skin lesions. The effectiveness, specificity, and accuracy of classifiers were compared and analysed based on available datasets.


Author(s):  
Kaiyi Peng ◽  
Bin Fang ◽  
Mingliang Zhou

Liver lesion segmentation from abdomen computed tomography (CT) with deep neural networks remains challenging due to the small volume and the unclear boundary. To effectively tackle these problems, in this paper, we propose a cascaded deeply supervised convolutional networks (CDS-Net). The cascaded deep supervision (CDS) mechanism uses auxiliary losses to construct a cascaded segmentation method in a single network, focusing the network attention on pixels that are more difficult to classify, so that the network can segment the lesion more effectively. CDS mechanism can be easily integrated into standard CNN models and it helps to increase the model sensitivity and prediction accuracy. Based on CDS mechanism, we propose a cascaded deep supervised ResUNet, which is an end-to-end liver lesion segmentation network. We conduct experiments on LiTS and 3DIRCADb dataset. Our method has achieved competitive results compared with other state-of-the-art ones.


2017 ◽  
Author(s):  
Juan C. Prieto ◽  
Michele Cavallari ◽  
Miklos Palotai ◽  
Alfredo Morales Pinzon ◽  
Svetlana Egorova ◽  
...  

Author(s):  
Alex Hernández-García ◽  
Johannes Mehrer ◽  
Nikolaus Kriegeskorte ◽  
Peter König ◽  
Tim C. Kietzmann

Sign in / Sign up

Export Citation Format

Share Document