scholarly journals SELECTED APPLICATIONS OF DEEP NEURAL NETWORKS IN SKIN LESION DIAGNOSTIC

Author(s):  
Magdalena Michalska

The article provides an overview of selected applications of deep neural networks in the diagnosis of skin lesions from human dermatoscopic images, including many dermatological diseases, including very dangerous malignant melanoma. The lesion segmentation process, features selection and classification was described. Application examples of binary and multiclass classification are given. The described algorithms have been widely used in the diagnosis of skin lesions. The effectiveness, specificity, and accuracy of classifiers were compared and analysed based on available datasets.

Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5172
Author(s):  
Yuying Dong ◽  
Liejun Wang ◽  
Shuli Cheng ◽  
Yongming Li

Considerable research and surveys indicate that skin lesions are an early symptom of skin cancer. Segmentation of skin lesions is still a hot research topic. Dermatological datasets in skin lesion segmentation tasks generated a large number of parameters when data augmented, limiting the application of smart assisted medicine in real life. Hence, this paper proposes an effective feedback attention network (FAC-Net). The network is equipped with the feedback fusion block (FFB) and the attention mechanism block (AMB), through the combination of these two modules, we can obtain richer and more specific feature mapping without data enhancement. Numerous experimental tests were given by us on public datasets (ISIC2018, ISBI2017, ISBI2016), and a good deal of metrics like the Jaccard index (JA) and Dice coefficient (DC) were used to evaluate the results of segmentation. On the ISIC2018 dataset, we obtained results for DC equal to 91.19% and JA equal to 83.99%, compared with the based network. The results of these two main metrics were improved by more than 1%. In addition, the metrics were also improved in the other two datasets. It can be demonstrated through experiments that without any enhancements of the datasets, our lightweight model can achieve better segmentation performance than most deep learning architectures.


Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1224
Author(s):  
Omran Salih ◽  
Serestina Viriri

Markov random field (MRF) theory has achieved great success in image segmentation. Researchers have developed various methods based on MRF theory to solve skin lesions segmentation problems such as pixel-based MRF model, stochastic region-merging approach, symmetric MRF model, etc. In this paper, the proposed method seeks to provide a complement to the advantages of the pixel-based MRF model and stochastic region-merging approach. This is in order to overcome shortcomings of the pixel-based MRF model, because of various challenges that affect the skin lesion segmentation results such as irregular and fuzzy border, noisy and artifacts presence, and low contrast between lesions. The strength of the proposed method lies in the aspect of combining the benefits of the pixel-based MRF model and the stochastic region-merging by decomposing the likelihood function into the multiplication of stochastic region-merging likelihood function and the pixel likelihood function. The proposed method was evaluated on bench marked available datasets, PH2 and ISIC. The proposed method achieves Dice coefficients of 89.65 % on PH2 and 88.34 % on ISIC datasets respectively.


2021 ◽  
pp. 27-38
Author(s):  
Rafaela Carvalho ◽  
João Pedrosa ◽  
Tudor Nedelcu

AbstractSkin cancer is one of the most common types of cancer and, with its increasing incidence, accurate early diagnosis is crucial to improve prognosis of patients. In the process of visual inspection, dermatologists follow specific dermoscopic algorithms and identify important features to provide a diagnosis. This process can be automated as such characteristics can be extracted by computer vision techniques. Although deep neural networks can extract useful features from digital images for skin lesion classification, performance can be improved by providing additional information. The extracted pseudo-features can be used as input (multimodal) or output (multi-tasking) to train a robust deep learning model. This work investigates the multimodal and multi-tasking techniques for more efficient training, given the single optimization of several related tasks in the latter, and generation of better diagnosis predictions. Additionally, the role of lesion segmentation is also studied. Results show that multi-tasking improves learning of beneficial features which lead to better predictions, and pseudo-features inspired by the ABCD rule provide readily available helpful information about the skin lesion.


Author(s):  
Quoc Cuong Ninh ◽  
Thi-Thao Tran ◽  
Tien Thanh Tran ◽  
Thi Anh Xuan Tran ◽  
Van-Truong Pham

Author(s):  
Kaiyi Peng ◽  
Bin Fang ◽  
Mingliang Zhou

Liver lesion segmentation from abdomen computed tomography (CT) with deep neural networks remains challenging due to the small volume and the unclear boundary. To effectively tackle these problems, in this paper, we propose a cascaded deeply supervised convolutional networks (CDS-Net). The cascaded deep supervision (CDS) mechanism uses auxiliary losses to construct a cascaded segmentation method in a single network, focusing the network attention on pixels that are more difficult to classify, so that the network can segment the lesion more effectively. CDS mechanism can be easily integrated into standard CNN models and it helps to increase the model sensitivity and prediction accuracy. Based on CDS mechanism, we propose a cascaded deep supervised ResUNet, which is an end-to-end liver lesion segmentation network. We conduct experiments on LiTS and 3DIRCADb dataset. Our method has achieved competitive results compared with other state-of-the-art ones.


Sign in / Sign up

Export Citation Format

Share Document