Integrating Sentiment Analysis in Recommender Systems

Author(s):  
Bui Thanh Hung
2021 ◽  
Author(s):  
Dalia Hanna ◽  
Abdolreza Abhari ◽  
Alexander Ferworn

The recent application of recommender systems for educational resources and e-learning has facilitated online and accessible education on social networks. However, there are currently few studies about the methods for evaluation and performance measurement of these recommender systems in the complicated environment of educational and social networking platforms. The purpose of this research paper is to investigate the effectiveness of using sentiment analysis methods for educational resources based on user comments and compare it with the quantitative approach based on user rating to recommend best open learning resources (OER) available through online OER repositories. The quality of the OER will be justified by comparing the user rating and the users' reviews. The quality of users' reviews is based on calculating the term frequency for selected positive and negative terms, then determining the similarity among the comments. Comments with positive or negative words confirm the high and low ratings respectively. Keywords: Open Education Resources, OER, Recommender Systems, Sentiment Analysis.


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5666
Author(s):  
Cach N. Dang ◽  
María N. Moreno-García ◽  
Fernando De la Prieta

Recommender systems have been applied in a wide range of domains such as e-commerce, media, banking, and utilities. This kind of system provides personalized suggestions based on large amounts of data to increase user satisfaction. These suggestions help client select products, while organizations can increase the consumption of a product. In the case of social data, sentiment analysis can help gain better understanding of a user’s attitudes, opinions and emotions, which is beneficial to integrate in recommender systems for achieving higher recommendation reliability. On the one hand, this information can be used to complement explicit ratings given to products by users. On the other hand, sentiment analysis of items that can be derived from online news services, blogs, social media or even from the recommender systems themselves is seen as capable of providing better recommendations to users. In this study, we present and evaluate a recommendation approach that integrates sentiment analysis into collaborative filtering methods. The recommender system proposal is based on an adaptive architecture, which includes improved techniques for feature extraction and deep learning models based on sentiment analysis. The results of the empirical study performed with two popular datasets show that sentiment–based deep learning models and collaborative filtering methods can significantly improve the recommender system’s performance.


Author(s):  
Xieling Chen ◽  
Haoran Xie ◽  
Jingjing Wang ◽  
Zongxi Li ◽  
Gary Cheng ◽  
...  

2021 ◽  
Author(s):  
Dalia Hanna ◽  
Abdolreza Abhari ◽  
Alexander Ferworn

The recent application of recommender systems for educational resources and e-learning has facilitated online and accessible education on social networks. However, there are currently few studies about the methods for evaluation and performance measurement of these recommender systems in the complicated environment of educational and social networking platforms. The purpose of this research paper is to investigate the effectiveness of using sentiment analysis methods for educational resources based on user comments and compare it with the quantitative approach based on user rating to recommend best open learning resources (OER) available through online OER repositories. The quality of the OER will be justified by comparing the user rating and the users' reviews. The quality of users' reviews is based on calculating the term frequency for selected positive and negative terms, then determining the similarity among the comments. Comments with positive or negative words confirm the high and low ratings respectively. Keywords: Open Education Resources, OER, Recommender Systems, Sentiment Analysis.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248695
Author(s):  
Nurul Aida Osman ◽  
Shahrul Azman Mohd Noah ◽  
Mohammad Darwich ◽  
Masnizah Mohd

Recently. recommender systems have become a very crucial application in the online market and e-commerce as users are often astounded by choices and preferences and they need help finding what the best they are looking for. Recommender systems have proven to overcome information overload issues in the retrieval of information, but still suffer from persistent problems related to cold-start and data sparsity. On the flip side, sentiment analysis technique has been known in translating text and expressing user preferences. It is often used to help online businesses to observe customers’ feedbacks on their products as well as try to understand customer needs and preferences. However, the current solution for embedding traditional sentiment analysis in recommender solutions seems to have limitations when involving multiple domains. Therefore, an issue called domain sensitivity should be addressed. In this paper, a sentiment-based model with contextual information for recommender system was proposed. A novel solution for domain sensitivity was proposed by applying a contextual information sentiment-based model for recommender systems. In evaluating the contributions of contextual information in sentiment-based recommendations, experiments were divided into standard rating model, standard sentiment model and contextual information model. Results showed that the proposed contextual information sentiment-based model illustrates better performance as compared to the traditional collaborative filtering approach.


2020 ◽  
Vol 8 (6) ◽  
pp. 4085-4089

A Recommender System has become the go-to application for the internet generation these days. Mono-variate, bi-variate and multi-variate Recommender Systems are available to consumers of various products and services for the last 10 years or so only. In this paper, opinion mining dependent sentiment analysis using NLP tools will be used to recommend products to their purchasers on e-commerce websites. The application can be developed on the Python platform can be commercially used and will be precisely used to people who have to spend money without traditionally touching or feeling the item


Author(s):  
Fouzi Harrag ◽  
Abdulmalik Salman Al-Salman ◽  
Alaa Alquahtani

Recommender systems nowadays are playing an important role in the delivery of services and information to users. Sentiment analysis (also known as opinion mining) is the process of determining the attitude of textual opinions, whether they are positive, negative or neutral. Data sparsity is representing a big issue for recommender systems because of the insufficiency of user rating or absence of data about users or items. This research proposed a hybrid approach combining sentiment analysis and recommender systems to tackle the problem of data sparsity problems by predicting the rating of products from users’ reviews using text mining and NLP techniques. This research focuses especially on Arabic reviews, where the model is evaluated using Opinion Corpus for Arabic (OCA) dataset. Our system was efficient, and it showed a good accuracy of nearly 85% in predicting the rating from reviews.


2012 ◽  
Vol 20 (1) ◽  
pp. 1-28 ◽  
Author(s):  
EUGENIO MARTÍNEZ-CÁMARA ◽  
M. TERESA MARTÍN-VALDIVIA ◽  
L. ALFONSO UREÑA-LÓPEZ ◽  
A RTURO MONTEJO-RÁEZ

AbstractIn recent years, the interest among the research community in sentiment analysis (SA) has grown exponentially. It is only necessary to see the number of scientific publications and forums or related conferences to understand that this is a field with great prospects for the future. On the other hand, the Twitter boom has boosted investigation in this area due fundamentally to its potential applications in areas such as business or government intelligence, recommender systems, graphical interfaces and virtual assistance. However, to fully understand this issue, a profound revision of the state of the art is first necessary. It is for this reason that this paper aims to represent a starting point for those investigations concerned with the latest references to Twitter in SA.


Author(s):  
Cach Nhan Dang ◽  
María N. Moreno ◽  
Fernando De la Prieta

Recommender systems have been applied in a wide range of domains such as e-commerce, media, banking, and utilities. This kind of system provides personalized suggestions based on large amounts of data in order to increase user satisfaction. These suggestions help client select products, while organizations can increase the consumption of a product. In the case of social data, sentiment analysis can help gain better understanding of a user’s attitudes, opinions and emotions, which is beneficial to integrate in recommender systems for achieving higher recommendation reliability. On the one hand, this information can be used to complement explicit ratings given to products by users. On the other hand, sentiment analysis of items that can be derived from online news services, blogs, social media or even from the recommender systems themselves is seen as capable of providing better recommendations to users. In this study, we present and evaluate a recommendation approach that integrates sentiment analysis into collaborative filtering methods. The recommender system proposal is based on an adaptive architecture, which includes improved techniques for feature extraction and deep learning models based on sentiment analysis. The results of the empirical study performed with two popular datasets show that sentiment–based deep learning models and collaborative filtering methods can significantly improve the recommender system’s performance.


Sign in / Sign up

Export Citation Format

Share Document