MHDNE: Network Embedding Based on Multivariate Hawkes Process

Author(s):  
Ying Yin ◽  
Jianpeng Zhang ◽  
Yulong Pei ◽  
Xiaotao Cheng ◽  
Lixin Ji
Author(s):  
Hong Huang ◽  
Zixuan Fang ◽  
Xiao Wang ◽  
Youshan Miao ◽  
Hai Jin

Network embedding, mapping nodes in a network to a low-dimensional space, achieves powerful performance. An increasing number of works focus on static network embedding, however, seldom attention has been paid to temporal network embedding, especially without considering the effect of mesoscopic dynamics when the network evolves. In light of this, we concentrate on a particular motif --- triad --- and its temporal dynamics, to study the temporal network embedding. Specifically, we propose MTNE, a novel embedding model for temporal networks. MTNE not only integrates the Hawkes process to stimulate the triad evolution process that preserves motif-aware high-order proximities, but also combines attention mechanism to distinguish the importance of different types of triads better. Experiments on various real-world temporal networks demonstrate that, compared with several state-of-the-art methods, our model achieves the best performance in both static and dynamic tasks, including node classification, link prediction, and link recommendation.


Author(s):  
Zhixian Liu ◽  
Qingfeng Chen ◽  
Wei Lan ◽  
Jiahai Liang ◽  
Yiping Pheobe Chen ◽  
...  

: Traditional network-based computational methods have shown good results in drug analysis and prediction. However, these methods are time consuming and lack universality, and it is difficult to exploit the auxiliary information of nodes and edges. Network embedding provides a promising way for alleviating the above problems by transforming network into a low-dimensional space while preserving network structure and auxiliary information. This thus facilitates the application of machine learning algorithms for subsequent processing. Network embedding has been introduced into drug analysis and prediction in the last few years, and has shown superior performance over traditional methods. However, there is no systematic review of this issue. This article offers a comprehensive survey of the primary network embedding methods and their applications in drug analysis and prediction. The network embedding technologies applied in homogeneous network and heterogeneous network are investigated and compared, including matrix decomposition, random walk, and deep learning. Especially, the Graph neural network (GNN) methods in deep learning are highlighted. Further, the applications of network embedding in drug similarity estimation, drug-target interaction prediction, adverse drug reactions prediction, protein function and therapeutic peptides prediction are discussed. Several future potential research directions are also discussed.


Author(s):  
Quanyu Dai ◽  
Xiao Shen ◽  
Zimu Zheng ◽  
Liang Zhang ◽  
Qiang Li ◽  
...  

2021 ◽  
Vol 15 (1) ◽  
pp. 1-20
Author(s):  
Wei Wang ◽  
Jiaying Liu ◽  
Tao Tang ◽  
Suppawong Tuarob ◽  
Feng Xia ◽  
...  

2021 ◽  
Vol 25 (3) ◽  
pp. 711-738
Author(s):  
Phu Pham ◽  
Phuc Do

Link prediction on heterogeneous information network (HIN) is considered as a challenge problem due to the complexity and diversity in types of nodes and links. Currently, there are remained challenges of meta-path-based link prediction in HIN. Previous works of link prediction in HIN via network embedding approach are mainly focused on exploiting features of node rather than existing relations in forms of meta-paths between nodes. In fact, predicting the existence of new links between non-linked nodes is absolutely inconvincible. Moreover, recent HIN-based embedding models also lack of thorough evaluations on the topic similarity between text-based nodes along given meta-paths. To tackle these challenges, in this paper, we proposed a novel approach of topic-driven multiple meta-path-based HIN representation learning framework, namely W-MMP2Vec. Our model leverages the quality of node representations by combining multiple meta-paths as well as calculating the topic similarity weight for each meta-path during the processes of network embedding learning in content-based HINs. To validate our approach, we apply W-TMP2Vec model in solving several link prediction tasks in both content-based and non-content-based HINs (DBLP, IMDB and BlogCatalog). The experimental outputs demonstrate the effectiveness of proposed model which outperforms recent state-of-the-art HIN representation learning models.


Author(s):  
Dongxiao He ◽  
Youyou Wang ◽  
Jinxin Cao ◽  
Weiping Ding ◽  
Shizhan Chen ◽  
...  

2021 ◽  
Vol 11 (11) ◽  
pp. 5043
Author(s):  
Xi Chen ◽  
Bo Kang ◽  
Jefrey Lijffijt ◽  
Tijl De Bie

Many real-world problems can be formalized as predicting links in a partially observed network. Examples include Facebook friendship suggestions, the prediction of protein–protein interactions, and the identification of hidden relationships in a crime network. Several link prediction algorithms, notably those recently introduced using network embedding, are capable of doing this by just relying on the observed part of the network. Often, whether two nodes are linked can be queried, albeit at a substantial cost (e.g., by questionnaires, wet lab experiments, or undercover work). Such additional information can improve the link prediction accuracy, but owing to the cost, the queries must be made with due consideration. Thus, we argue that an active learning approach is of great potential interest and developed ALPINE (Active Link Prediction usIng Network Embedding), a framework that identifies the most useful link status by estimating the improvement in link prediction accuracy to be gained by querying it. We proposed several query strategies for use in combination with ALPINE, inspired by the optimal experimental design and active learning literature. Experimental results on real data not only showed that ALPINE was scalable and boosted link prediction accuracy with far fewer queries, but also shed light on the relative merits of the strategies, providing actionable guidance for practitioners.


Sign in / Sign up

Export Citation Format

Share Document