scholarly journals A First-Order Logic with Frames

Author(s):  
Adithya Murali ◽  
Lucas Peña ◽  
Christof Löding ◽  
P. Madhusudan

AbstractWe propose a novel logic, called Frame Logic (FL), that extends first-order logic (with recursive definitions) using a construct $$\textit{Sp}(\cdot )$$ Sp ( · ) that captures the implicit supports of formulas— the precise subset of the universe upon which their meaning depends. Using such supports, we formulate proof rules that facilitate frame reasoning elegantly when the underlying model undergoes change. We show that the logic is expressive by capturing several data-structures and also exhibit a translation from a precise fragment of separation logic to frame logic. Finally, we design a program logic based on frame logic for reasoning with programs that dynamically update heaps that facilitates local specifications and frame reasoning. This program logic consists of both localized proof rules as well as rules that derive the weakest tightest preconditions in FL.

1993 ◽  
Vol 58 (1) ◽  
pp. 291-313 ◽  
Author(s):  
Robert S. Lubarsky

Inductive definability has been studied for some time already. Nonetheless, there are some simple questions that seem to have been overlooked. In particular, there is the problem of the expressibility of the μ-calculus.The μ-calculus originated with Scott and DeBakker [SD] and was developed by Hitchcock and Park [HP], Park [Pa], Kozen [K], and others. It is a language for including inductive definitions with first-order logic. One can think of a formula in first-order logic (with one free variable) as defining a subset of the universe, the set of elements that make it true. Then “and” corresponds to intersection, “or” to union, and “not” to complementation. Viewing the standard connectives as operations on sets, there is no reason not to include one more: least fixed point.There are certain features of the μ-calculus coming from its being a language that make it interesting. A natural class of inductive definitions are those that are monotone: if X ⊃ Y then Γ (X) ⊃ Γ (Y) (where Γ (X) is the result of one application of the operator Γ to the set X). When studying monotonic operations in the context of a language, one would need a syntactic guarantor of monotonicity. This is provided by the notion of positivity. An occurrence of a set variable S is positive if that occurrence is in the scopes of exactly an even number of negations (the antecedent of a conditional counting as a negation). S is positive in a formula ϕ if each occurrence of S is positive. Intuitively, the formula can ask whether x ∊ S, but not whether x ∉ S. Such a ϕ can be considered an inductive definition: Γ (X) = {x ∣ ϕ(x), where the variable S is interpreted as X}. Moreover, this induction is monotone: as X gets bigger, ϕ can become only more true, by the positivity of S in ϕ. So in the μ-calculus, a formula is well formed by definition only if all of its inductive definitions are positive, in order to guarantee that all inductive definitions are monotone.


2008 ◽  
Vol 19 (01) ◽  
pp. 205-217 ◽  
Author(s):  
STEVEN LINDELL

We use singulary vocabularies to analyze first-order definability over doubly-linked data structures. Singulary vocabularies contain only monadic predicate and monadic function symbols. A class of mathematical structures in any vocabulary can be elementarily interpreted in a singulary vocabulary, while preserving notions of total size and degree. Doubly-linked data structures are a special case of bounded-degree finite structures in which there are reciprocal connections between elements, corresponding closely with physically feasible models of information storage. They can be associated with logical models involving unary relations and bijective functions in what we call an invertible singulary vocabulary. Over classes of these models, there is a normal form for first-order logic which eliminates all quantification of dependent variables. The paper provides a syntactically based proof using counting quantifiers. It also makes precise the notion of implicit calculability for arbitrary arity first-order formulas. Linear-time evaluation of first-order logic over doubly-linked data structures becomes a direct corollary. Included is a discussion of why these special data structures are appropriate for physically realizable models of information.


1979 ◽  
Vol 44 (1) ◽  
pp. 103-108 ◽  
Author(s):  
Carl F. Morgenstern

Originally generalized quantifiers were introduced to specify that a given formula was true for “many x's” e.g. ⊨ Qxφ(x) iff card{x ∈ ∣∣ ∣ ⊨ φ[x]} ≥ ℵ0, ℵ1, or some fixed cardinal κ. In this paper we formalize the notion that φ{x) is true “for almost all x”. This is accomplished by referring to structures = (′, μ) where ′ is a first-order structure and μ is a measure of a suitable type on the universe of ′. We will prove that the language Lμ obtained from first-order logic by adjoining a quantifier Qμ, which ranges over the measure μ, is fully compact if we assume the existence of a proper class of measurable cardinals. As a corollary to the compactness theorem we obtain the recursive enumerability of the validities of Lμ. Finally, the Magidor-Malitz quantifiers Qkn (n ∈ ω) will be added to Lμ together with analogous quantifiers Qμm (m ∈ ω) to form Lκμ<ω,<ω, which is compact for sets of sentences of cardinality < κ, where κ is a measurable cardinal > ℵ0.An alternate approach to formalizing “for almost all” has been recently developed by Barwise, Kaufmann and Makkai [1] who follow a suggestion of Shelah [5].


Author(s):  
Shaughan Lavine

In first-order predicate logic there are symbols for fixed individuals, relations and functions on a given universe of individuals and there are variables ranging over the individuals, with associated quantifiers. Second-order logic adds variables ranging over relations and functions on the universe of individuals, and associated quantifiers, which are called second-order variables and quantifiers. Sometimes one also adds symbols for fixed higher-order relations and functions among and on the relations, functions and individuals of the original universe. One can add third-order variables ranging over relations and functions among and on the relations, functions and individuals on the universe, with associated quantifiers, and so on, to yield logics of even higher order. It is usual to use proof systems for higher-order logics (that is, logics beyond first-order) that include analogues of the first-order quantifier rules for all quantifiers. An extensional n-ary relation variable in effect ranges over arbitrary sets of n-tuples of members of the universe. (Functions are omitted here for simplicity: remarks about them parallel those for relations.) If the set of sets of n-tuples of members of a universe is fully determined once the universe itself is given, then the truth-values of sentences involving second-order quantifiers are determined in a structure like the ones used for first-order logic. However, if the notion of the set of all sets of n-tuples of members of a universe is specified in terms of some theory about sets or relations, then the universe of a structure must be supplemented by specifications of the domains of the various higher-order variables. No matter what theory one adopts, there are infinitely many choices for such domains compatible with the theory over any infinite universe. This casts doubt on the apparent clarity of the notion of ‘all n-ary relations on a domain’: since the notion cannot be defined categorically in terms of the domain using any theory whatsoever, how could it be well-determined?


Author(s):  
Tal Lev-Ami ◽  
Neil Immerman ◽  
Thomas Reps ◽  
Mooly Sagiv ◽  
Siddharth Srivastava ◽  
...  

1982 ◽  
Vol 47 (4) ◽  
pp. 793-808
Author(s):  
John Bacon

Quine has shown that set theory may be based on inclusion and abstraction [1937], [1953]. He quantifies over (or abstracts upon) sets of all kinds, of course, including sets of sets. Here I confine Quine's approach to quantification over (abstraction upon) individuals alone, or at any rate their unit classes. Forsaking quantification over sets undercuts Quine's definition of negation, however. Smullyan sketches a first-order restriction of Quine's approach with no bound class variables for which inclusion and abstraction alone are adequate logical primitives [1957, n. 10]. However, the definition of negation requires more than one element in the universe of discourse. This requirement is met for Smullyan because he is doing arithmetic. Here, on the other hand, I presuppose only that the universe is nonempty. Accordingly, I assume a third primitive notion, the empty class. I will show that this threefold basis suffices both for classical first-order logic and for a version of “free” many-sorted logic. The monadic fragment, which I call Boolean logic with abstraction, is intermediate in strength between Boolean class logic and Lesniewski's Ontology. It affords a novel perspective on descriptions, particularly in their generic use.


Author(s):  
T. Lev-Ami ◽  
N. Immerman ◽  
T. Reps ◽  
M. Sagiv ◽  
S. Srivastava ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document