Laboratory Performance of Stabilized Base with 100% Reclaimed Asphalt Pavement (RAP) Using Portland Cement, Bitumen Emulsion and Foamed-Bitumen

2021 ◽  
pp. 1257-1263
Author(s):  
Chibuike Ogbo ◽  
Eshan V. Dave ◽  
Jo E. Sias
2019 ◽  
Vol 262 ◽  
pp. 05002 ◽  
Author(s):  
Przemysław Buczyński ◽  
Marek Iwański

This article presents research on recycled cold mix with foamed bitumen (MCAS) containing recycled concrete aggregate. The primary concept driving this research was to determine if recycled concrete aggregate (RC) could be used as a substitute for reclaimed asphalt pavement (RAP). Recycled concrete aggregate was used in the MCAS mix in amounts ranging from 20%, 60% and 80%. The reference mix was the MCAS mix containing 50% reclaimed asphalt pavement (RAP) and virgin aggregate. Identical 0/31.5-mm continuously graded dolomite virgin aggregate was used in all mixes. 2.5% foamed bitumen (FB) and 2.0% CEM I 42.5R Portland cement (PC) were used to increase the cohesion of the mineral mix. Foamed bitumen was produced from 50/70 penetration paving bitumen. The behaviour of the recycled base course was tested in the range of cyclic sinusoidal strain with amplitude εo = 25–50 με. The tests were carried out in the (-7°C, 5°C, 13°C, 25°C, 40°C) temperature and (0.1 Hz, 0.3 Hz, 1 Hz, 3 Hz, 10 Hz, 20 Hz) loading time range. The complex modulus was tested in a direct tension-compression test on cylindrical samples (DTC-CY) in accordance with EN 12697-26. The results of the tests were used to assess the complex modulus (E*), phase angle (φ) and complex modulus components (E1) and (E2).Tests of the mixes indicate that recycled concrete aggregate can be used in recycled cold mixes in amounts of up to 80%. Increasing the amount of recycled concrete aggregate does not cause excessive stiffness of the recycled mix in comparison with the reference mix. The tests did not demonstrate a significant difference in terms of the phase angle (φ), which indicates a similar content of the viscous part and elastic part in the obtained complex modulus for the reference mix (RAP + MCAS) and the mix containing recycled concrete aggregate (RC + MCAS).


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 520
Author(s):  
Chun Li ◽  
Jian Ouyang ◽  
Peng Cao ◽  
Jingtao Shi ◽  
Wenting Yang ◽  
...  

A traditional cold recycled mixture with bitumen emulsion (CRMB) has a relatively low cracking resistance and moisture susceptibility, which greatly limits its application scope. A rejuvenating agent was employed to improve the pavement properties of CRMB. To avoid the rejuvenating agent having an adverse effect on the new bitumen, reclaimed asphalt pavement (RAP) was firstly treated by the rejuvenating agent, and the effect of rejuvenating time on the pavement properties of CRMB was investigated. Results indicate that the addition of a rejuvenating agent can greatly improve the ductility and moisture susceptibility of CRMB. Meanwhile, although the rejuvenating agent can soften aged bitumen, the addition of a rejuvenating agent can still increase the indirect tensile strength of CRMB and does not greatly reduce the rutting resistance of CRMB. This phenomenon exists because the rejuvenating agent can be both beneficial to the membrane structure of the bitumen emulsion mastic and aged bitumen. It can also greatly improve the bonding interface between RAP and the bitumen emulsion mastic. The rejuvenating time between RAP and the rejuvenating agent can affect the pavement properties of CRMB. To obtain better pavement properties, the optimum recommended rejuvenating time is between 5 and 7 days. Overall, the addition of rejuvenating agent can be a good choice to improve the pavement properties of CRMB.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 384
Author(s):  
Jorge Suárez-Macías ◽  
Juan María Terrones-Saeta ◽  
Francisco Javier Iglesias-Godino ◽  
Francisco Antonio Corpas-Iglesias

Power generation from biomass is one of the most promising energy sources available today. However, this industry has a series of wastes derived from its activity, mainly biomass fly ash and biomass bottom ash. Biomass bottom ash is a waste that has no current use and, in most cases, is deposited in landfills. In turn, road construction is one of the activities that produces the most pollution, as it requires huge amounts of raw materials. Therefore, this research proposes the use of biomass bottom ashes, in an unaltered form, for the formation of cold in-place recycling with bitumen emulsion. This type of mixture, which is highly sustainable owing to the use of a high percentage of waste, was made with reclaimed asphalt pavement, biomass bottom ash, water, and bitumen emulsion. To this end, the grading curve of the materials was analyzed, different bituminous mixtures were made with varying percentages of emulsion and water, and the mechanical properties of the mixtures were analyzed. At the same time, the same type of mix was made with reclaimed asphalt pavement and commercial limestone aggregate, in order to compare the results. The tests showed a better mechanical behavior of the bituminous mixes made with biomass bottom ash, maintaining physical properties similar to those of conventional mixes. In short, it was confirmed that the production of this type of mix with biomass bottom ash was feasible, creating sustainable materials that reuse currently unused waste and avoid landfill disposal.


Sign in / Sign up

Export Citation Format

Share Document