scholarly journals Development of Cold In-Place Recycling with Bitumen Emulsion and Biomass Bottom Ash

Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 384
Author(s):  
Jorge Suárez-Macías ◽  
Juan María Terrones-Saeta ◽  
Francisco Javier Iglesias-Godino ◽  
Francisco Antonio Corpas-Iglesias

Power generation from biomass is one of the most promising energy sources available today. However, this industry has a series of wastes derived from its activity, mainly biomass fly ash and biomass bottom ash. Biomass bottom ash is a waste that has no current use and, in most cases, is deposited in landfills. In turn, road construction is one of the activities that produces the most pollution, as it requires huge amounts of raw materials. Therefore, this research proposes the use of biomass bottom ashes, in an unaltered form, for the formation of cold in-place recycling with bitumen emulsion. This type of mixture, which is highly sustainable owing to the use of a high percentage of waste, was made with reclaimed asphalt pavement, biomass bottom ash, water, and bitumen emulsion. To this end, the grading curve of the materials was analyzed, different bituminous mixtures were made with varying percentages of emulsion and water, and the mechanical properties of the mixtures were analyzed. At the same time, the same type of mix was made with reclaimed asphalt pavement and commercial limestone aggregate, in order to compare the results. The tests showed a better mechanical behavior of the bituminous mixes made with biomass bottom ash, maintaining physical properties similar to those of conventional mixes. In short, it was confirmed that the production of this type of mix with biomass bottom ash was feasible, creating sustainable materials that reuse currently unused waste and avoid landfill disposal.

2021 ◽  
Vol 11 (8) ◽  
pp. 3334
Author(s):  
Jorge Suárez-Macías ◽  
Juan María Terrones-Saeta ◽  
Francisco Javier Iglesias-Godino ◽  
Francisco Antonio Corpas-Iglesias

Energy consumption, because of population development, is progressively increasing. For this reason, new sources of energy are being developed, such as that produced from the combustion of biomass. However, this type of renewable energy has one main disadvantage, the production of waste. Biomass bottom ash is a residue of this industry that currently has not much use. For this reason, this research evaluates its use as a filler in bituminous mixtures, since this sector also has a significant impact on the environment, as it requires large quantities of raw materials. With this objective, first, the physical and chemical properties of biomass bottom ashes were evaluated, verifying their characteristics for their use as filler. Subsequently, bituminous mixtures were conformed with biomass bottom ash as filler, and their physical and mechanical properties were analyzed through particle loss and Marshall tests. The results of these tests were compared with those obtained with the same type of mixture but with conventional and ophite aggregates. This study confirmed that biomass bottom ash was viable for use as a filler, creating mixtures with a higher percentage of bitumen, better mechanical behavior, and similar physical properties. In short, more sustainable material for roads was obtained with waste currently condemned to landfill.


2007 ◽  
Vol 34 (5) ◽  
pp. 581-588 ◽  
Author(s):  
J S Chen ◽  
P Y Chu ◽  
Y Y Lin ◽  
K Y Lin

Abstract: The purpose of this study was to recommend a testing procedure to detect the content of reclaimed asphalt pavement (RAP) used in hot-mix asphalt mixtures. Asphalt was extracted from RAP for use in blending with new binder and aggregate. The recovered binders were blended with virgin asphalt (AC-10) at 10 different concentrations. A concept called relative energy loss was proposed to determine the engineering properties of recycled asphalt concrete (RAC). The relative energy loss was found to be directly related to the resistance of RAC to moisture-induced damage. A noticeable increase in relative energy loss with as much as 50% RAP was observed. At 20% RAP, there was not enough RAP to change binder or mixture properties. The predicted performance of mixtures containing up to 40% RAP by weight was shown to be similar to that of virgin material mixtures. A model was developed to estimate the RAP content in terms of penetration, viscosity, and relative energy loss. Key words: reclaimed asphalt pavement, relative energy loss, moisture sensitivity.


2020 ◽  
Vol 12 (20) ◽  
pp. 8343
Author(s):  
Ana E. Hidalgo ◽  
Fernando Moreno-Navarro ◽  
Raúl Tauste ◽  
M. Carmen Rubio-Gámez

The main characteristics of bituminous mixtures manufactured with a considerable amount of reclaimed asphalt pavement (RAP), compared to conventional mixtures, are a reduction in workability, an increase in stiffness, and a loss of ductility, due to the presence of the aged bitumen contained in the RAP particles. To minimize these impacts, softer binders or rejuvenators are commonly used in the design of these mixtures in order to restore part of the ductility lost and to reduce the stiffness. In spite of previous investigations demonstrating that the mortar plays an essential role in the workability, long-term performance, and durability of bituminous mixtures (where cracking, cohesion, and adhesion problems all start at this scale), not many studies have assessed the impacts caused by the presence of RAP. In response to this, the present paper analyzes the workability, fatigue performance, and water sensitivity of bituminous mortars containing different amounts of RAP (from 0% to 100%) and rejuvenators. Mortar specimens were compacted using a gyratory compactor and studied via dynamic mechanical analysis under three point bending configuration. The results demonstrated that the presence of RAP reduces the workability and ductility of asphalt mortars. However, it also causes an increase in their stiffness, which induces a more elastic response and causes an increase in their resistance to fatigue, which could compensate for the loss of ductility. This aspect, together with the low water sensitivity shown, when using Portland cement as an active filler, would make it possible to produce asphalt materials with high RAP contents with a similar long-term mechanical performance as traditional ones. In addition, the use of rejuvenators was demonstrated to effectively correct the negative workability and ductility impacts caused by using RAP, without affecting the fatigue resistance and material adhesion/cohesion.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5473
Author(s):  
Katarzyna Konieczna ◽  
Piotr Pokorski ◽  
Wojciech Sorociak ◽  
Piotr Radziszewski ◽  
Dawid Żymełka ◽  
...  

The benefits of the use of cold recycling mixtures (CRMs) in pavement rehabilitation are associated with both the reduction of natural resource consumption by replacing them with recycled materials and the reduction of energy consumption during their production and paving. The evolution of the stiffness of CRMs in road construction and the fatigue life of pavements with CRM base layers are still being investigated. In this paper, CRMs with 1% cement content, called bitumen-stabilized materials with bitumen emulsion (BSM-Es), were examined. Mixtures that were differentiated in terms of Reclaimed Asphalt Pavement (RAP) content, as well as the amount and type of bitumen emulsions, were subjected to indirect tensile stiffness modulus (ITSM) tests at 5 °C, 13 °C, and 20 °C. The thermal sensitivities of the BSM-E mixtures were analyzed. BSM-E mixture stiffness modulus levels at various temperatures were determined using a statistical approach. On the basis of the results obtained, a discussion on the mechanistic-empirical design of flexible pavements with BSM-E base layers is presented. The potential benefits of using BSM-E materials in road construction in certain aspects of pavement life are indicated.


Author(s):  
Erica Yeung ◽  
Andrew Braham

Cold in-place recycling (CIR) mills existing bound pavement with a stabilizing agent to remove all surface distresses and some structural distresses. This research investigated the influence of extending the time after crushing, aggregate type, and asphalt emulsion type on four CIR compaction metrics and on the raveling test. Aggregate was crushed in the lab to mimic the milling process of CIR and was mixed with laboratory produced asphalt emulsion at various times after crushing. Three types of aggregate were used, including one field reclaimed asphalt pavement (RAP), a limestone-based laboratory-produced RAP, and a syenite-based laboratory-produced RAP. Two types of cationic medium set (CMS) asphalt emulsions were also used: a proprietary and a commodity asphalt emulsion. One of the compaction metrics, the number of gyrations to 76% Density ( N76), was found to have the most promise for capturing the charge on the RAP, as the limestone aggregate and proprietary asphalt emulsion saw the highest resistance to compaction. These two materials were the most reactive so it was reasonable that they caused the fastest break of the asphalt emulsion. The raveling test did not produce similarly conclusive results. Whereas some trends from the raveling test showed the ability to capture charge on the RAP, perhaps the four-hour cure before the raveling test may have masked any influence of time after crushing and asphalt emulsion type.


2017 ◽  
Vol 44 (6) ◽  
pp. 417-425 ◽  
Author(s):  
E. Mousa ◽  
A. Azam ◽  
M. El-Shabrawy ◽  
S.M. El-Badawy

This paper presents the engineering characteristics of reclaimed asphalt pavement (RAP), blended with virgin aggregate for unbound base and subbase layers. The proportions of RAP were 0%, 20%, 60%, 80%, and 100% by total mass of the blend. The experimental laboratory testing included index properties such as gradation, modified Proctor compaction, California Bearing Ratio, and hydraulic conductivity. Repeated load resilient modulus testing was conducted on the blends. The impact of load duration on resilient modulus was also investigated. A strong inverse trend was found between resilient modulus and California Bearing Ratio. An accurate model was proposed for the prediction of the resilient modulus as a function of stress state and reclaimed asphalt pavement percentage with coefficient of determination of 0.94. Finally, multilayer elastic analysis of typical pavement sections with the base layer constructed of virgin aggregate and reclaimed asphalt pavement blends showed good performance.


2016 ◽  
Vol 35 (4) ◽  
pp. 357-366 ◽  
Author(s):  
Joke Anthonissen ◽  
Wim Van den bergh ◽  
Johan Braet

Bituminous pavement can be recycled – even multiple times – by reusing it in new bituminous mixtures. If the mechanical properties of the binder get worse, this reclaimed asphalt is often used in the sub-structure of the road. Apparently, up till now, no end-of-life phase exists for the material. Actually, defining the end-of-life and the end-of-waste stage of a material is important for life cycle assessment modelling. Various standards and scientific studies on modelling life cycle assessment are known, but the crucial stages are not yet defined for reclaimed asphalt pavement. Unlike for iron, steel and aluminium scrap, at this moment, no legislative end-of-waste criteria for aggregates are formulated by the European Commission. More research is necessary in order to develop valuable end-of-life criteria for aggregates. This contribution is a mini-review article of the current regulations, standards and studies concerning end-of-life and end-of-waste of reclaimed asphalt pavement. The existing methodology in order to define end-of-waste criteria, a case study on aggregates and the argumentation used in finished legislative criteria are the basis to clarify some modelling issues for reclaimed asphalt material. Hence, this contribution elucidates the assignment of process environmental impacts to a life cycle stage as defined by EN15804, that is, end-of-life stage (C) and the supplementary information Module D with benefits and loads beyond the system boundary.


Sign in / Sign up

Export Citation Format

Share Document