Design and Analysis of Electrohydraulic Systems for Underwater Systems Utilizing Fluidic Artificial Muscle Actuators

Author(s):  
Edward M. Chapman ◽  
Matthew Bryant
2018 ◽  
Vol 11 (1) ◽  
Author(s):  
Kyeong Ho Cho ◽  
Ho Moon Kim ◽  
Youngeun Kim ◽  
Sang Yul Yang ◽  
Hyouk Ryeol Choi

Soft linear actuators (SLAs) such as shape memory alloy (SMA) wires, pneumatic soft actuators, dielectric elastomer actuator, and twisted and coiled soft actuator (TCA) called artificial muscle actuators in general, have many advantages over the conventional actuators. SLAs can realize innovative robotic technologies like soft robots, wearable robots, and bionic arms in the future, but further development is still needed in real applications because most SLAs do not provide large displacement or force as needed. This paper presents a novel mechanism supplementing SLAs by accumulating the displacement of multiple SLAs. It adopts the principle of differential gears in reverse. Since the input units of the mechanism are extensible, more displacement can be accumulated by increasing the number of the input units as many as needed. The mechanism is basically used to accumulate displacements, but can be used to accumulate forces by changing its operating mode. This paper introduces the design and working principle of the mechanism and validates its operation experimentally. In addition, the mechanism is implemented on a robotic arm and its effectiveness is confirmed.


Aerospace ◽  
2005 ◽  
Author(s):  
Jaehwan Kim ◽  
Zoubeida Ounaies ◽  
Sung-Ryul Yun ◽  
Yukeun Kang ◽  
Seung-Hun Bae

Electro-Active Paper (EAPap) materials based on cellulose are attractive for many applications because of their low voltage operation, lightweight, dryness, low power consumption, bio-degradable. The construction of EAPap actuator has been achieved using the cellulose paper film coated with thin electrode layers. This actuator showed a reversible and reproducible bending movement. In order to improve both force and displacement of this, EAPap actuator efforts are made to construct the device using increasing number of complementary conducting polymer layers and carbon nanotubes. A hybrid EAPap actuator is developed using single-wall carbon nanotubes (CNT)/Polyaniline (PANi) electrodes, as a replacement to gold electrodes. It is expected that the use of CNT can enhance the stiffness of the tri-layered actuator, thus improving the force output. Furthermore, the presence of the CNT may increase the actuation performance of the EAPap material. CNT is dispersed in NMP(1-Methyl-2-pyrrolidine), and the resulting solution is used as a solvent for PANi. The CNT/PANi/NMP solution is then cast on the EAPap by spin coating. The coated EAPap is dried in an oven. The effect of processing parameters on the final performance of the CNT/PANi electrodes is assessed. The final performance of the electrodes is quantified in terms of the electrical conductivity under dc and ac measurement conditions. The actuation output of the CNT/PANi/EAPap samples is tested in an environmental chamber in terms of free displacement and blocked force. The performance of the hybrid actuators is also investigated in terms of frequency, voltage, humidity and temperature to help shed light on the mechanism responsible for actuation. Comparison of these results in that of the EAPap with PANi and gold electrodes are also accomplished. EAPap materials are bio-degradable that is important property for artificial muscle actuators for biomimetic with controlled properties and shape.


Author(s):  
Iain A. Anderson ◽  
Milan Kelch ◽  
Shumeng Sun ◽  
Casey Jowers ◽  
Daniel Xu ◽  
...  

Author(s):  
C.T. Phelan ◽  
R.J. MacDonald ◽  
J.L. Tangorra

Author(s):  
Sunil Kumar Rajendran ◽  
Feitian Zhang

Super-coiled polymer (SCP), one of the newly-developed artificial muscles, has various advantages over traditional artificial muscles in terms of cost, flexibility and power-to-weight ratio. This paper investigates the performance of super-coiled polymer-based actuation in underwater robotics, and presents a novel design of robotic fish using antagonistic SCP actuators. Dynamic model of the robot is derived. An example robotic fish prototype is developed and used in experiments to study SCP actuation for underwater robots. Furthermore, experimental results show that using SCP actuators in robotic fish solves the challenging heat-dissipation problem at ease, thus improving the dynamic response of SCP actuation significantly. A PID controller is designed to regulate the tail flap angle of the designed robotic fish. Simulation results of the closed-loop system are presented to validate the proposed robot design and actuation approach.


1999 ◽  
Vol 600 ◽  
Author(s):  
Y. Bar-Cohen ◽  
S. Leary ◽  
A. Yavrouian ◽  
K. Oguro ◽  
S. Tadokoro ◽  
...  

AbstractIn recent years, electroactive polymers (EAP) materials have gained recognition as potential actuators with unique capabilities having the closest performance resemblance to biological muscles. Ion-exchange membrane metallic composites (IPMC) are one of the EAP materials with such a potential. The strong bending that is induced by IPMC offers attractive actuation for the construction of various mechanisms. Examples of applications that were conceived and investigated for planetary tasks include a gripper and wiper. The development of the wiper for dust removal from the window of a miniature rover, planned for launch to an asteroid, is the subject of this reported study. The application of EAP in space conditions is posing great challenge due to the harsh operating conditions that are involved and the critical need for robustness and durability. The various issues that can affect the application of IPMC were examined including operation in vacuum, low temperatures, and the effect of the electromechanical and ionic characteristics of IPMC on its actuation capability. The authors introduced highly efficient IPMC materials, mechanical modeling, unique elements and protective coatings in an effort to enhance the applicability of IPMC as an actuator of a planetary dust-wiper. Results showed that the IPMC technology is not ready yet for practical implementation due to residual deformation that is introduced under DC activation and the difficulty to protect the material ionic content over the needed 3-years durability. Further studies are under way to overcome these obstacles and other EAP materials are also being considered as alternative bending actuators.


2018 ◽  
Author(s):  
Devin R. Berg ◽  
Perry Y. Li ◽  
Arthur G. Erdman

Artificial muscle actuators have become a popular choice as actuation units for robotic applications, particularly in the growing area of soft robotics. The precise specification of an artificial muscle actuator for a particular application requires the consideration of several parameters that work together to achieve the performance characteristics of the actuator. This paper explores the specification of artificial muscle actuator parameters by presenting and applying the analytical description of the actuator, simulation by finite element method for investigating material stresses under a wide variety of configurations, and a specific parameter selection process. This is followed by an experimental validation using an example actuator to compare against the predicted actuator performance. Some discussion of appropriateness of this type of actuator as a candidate solution for use in the example application of a dexterous continuum manipulator is included.This work has been submitted to the IEEE for possible publication.


Sign in / Sign up

Export Citation Format

Share Document