Research on Precision of Transmission Mechanism in Flight Control Deck Suite of Civil Aircraft

Author(s):  
Fang Zhang ◽  
Xianchao Ma ◽  
Yinbo Zhang ◽  
Ruijie Fan
2012 ◽  
Vol 116 (1175) ◽  
pp. 45-66 ◽  
Author(s):  
W. Schuster ◽  
M. Porretta ◽  
W. Ochieng

AbstractCurrent state-of-the-art trajectory prediction tools typically model aircraft as three-dimensional point-masses, and make a number of simplifying assumptions about the actual and anticipated dynamics states of the aircraft. They are typically based on predefined settings obtained from existing databases such as Eurocontrol’s Bada rather than real-time information, including on the environment, available onboard the aircraft. This significantly limits trajectory prediction performance. This paper proposes a high-accuracy four-dimensional trajectory prediction model for use onboard civil aircraft, as well as by ground-based systems, which addresses these limitations. It is designed for strategic traffic capacity optimisation and conflict-detection and resolution over time-horizons covering the entire duration of a flight. The model incorporates a number of features including a novel flight-control-system and an enhanced flight-script that incorporates new taxonomy and content thereby enabling better definition of aircraft intent. The accuracy of the model is characterised using operational data acquired during a real flight trial. Results show that the performance of the proposed model is significantly better than the current models. Its accuracy is better than the required navigation performance for departure, en route and Non-Precision-Approach phases of flight.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xinjian Ma ◽  
Shiqian Liu ◽  
Huihui Cheng ◽  
Weizhi Lyu

Purpose This paper aims to focus on the sensor fault-tolerant control (FTC) for civil aircraft under exterior disturbance. Design/methodology/approach First, a three-step cubature Kalman filter (TSCKF) is designed to detect and isolate the sensor fault and to reconstruct the sensor signal. Meanwhile, a nonlinear disturbance observer (NDO) is designed for disturbance estimation. The NDO and the TSCKF are combined together and an NDO-TSCKF is proposed to solve the problem of sensor faults and bounded disturbances simultaneously. Furthermore, an FTC scheme is designed based on the nonlinear dynamic inversion (NDI) and the NDO-TSCKF. Findings The method is verified by a Cessna 172 aircraft model under bias gyro fault and constant angular rate disturbance. The proposed NDO-TSCKF has the ability of signal reconstruction and disturbance estimation. The proposed FTC scheme is also able to solve the sensor fault and disturbance simultaneously. Research limitations/implications NDO-TSCKF is the novel algorithm used in sensor signal reconstruction for aircraft. Then, disturbance observer-based FTC can improve the flight control system performances when the system with faults. Practical implications The NDO-TSCKF-based FTC scheme can be used to solve the sensor fault and exterior disturbance in flight control. For example, the bias gyro fault with constant angular rate disturbance of a civil aircraft is studied. Social implications Signal reconstruction for critical sensor faults and disturbance observer-based FTC for civil aircraft are useful in modern civil aircraft design and development. Originality/value This is the research paper studies on the signal reconstruction and FTC scheme for civil aircraft. The proposed NDO-TSCKF is better than the current reconstruction filter because the failed sensor signal can be reconstructed under disturbances. This control scheme has a better fault-tolerant capability for sensor faults and bounded disturbances than using regular NDI control.


Sign in / Sign up

Export Citation Format

Share Document