Synergistic Flow Induced Oscillations of Multiple Cylinders in Harvesting Marine Hydrokinetic Energy

Author(s):  
H. Sun ◽  
M. M. Bernitsas
2019 ◽  
Vol 187 ◽  
pp. 106069 ◽  
Author(s):  
Shubham Tandon ◽  
Sathvik Divi ◽  
Michael Muglia ◽  
Christopher Vermillion ◽  
Andre Mazzoleni

2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Mengyu Li ◽  
Christopher C. Bernitsas ◽  
Jing Guo ◽  
Hai Sun

Abstract Flow-induced oscillations/vibrations (FIO/V) of cylinders in tandem can be enhanced by proper in-flow spacing to increase hydrokinetic energy harnessing. In a farm of multiple cylinders in tandem, the effect of interference on harnessing efficiency arises. Three years of systematic experiments in the Marine Renewable Laboratory (MRELab) of the University of Michigan, on an isolated cylinder, and two and three cylinders in tandem have revealed that synergistic FIO can enhance oscillations of cylinders in close proximity. Two cylinders in tandem can harness 2.5–13.5 times the hydrokinetic power of one isolated cylinder. Three cylinders in tandem can harness 3.4–26.4 times the hydrokinetic power of one isolated cylinder. Negative impact on the harnessed energy by multiple cylinders, such as the shielding effect for the downstream cylinder/s, is possible. Specifically for the three-cylinder configuration, at a certain flow speed, the decrease in the power of the middle cylinder can be overcome by adjusting its stiffness and/or damping.


Author(s):  
Joe Deese ◽  
Peyman Razi ◽  
Michael Muglia ◽  
Praveen Ramaprabhu ◽  
Chris Vermillion

In this paper, we present a fused flight dynamics and wake interaction modeling framework for arrays (farms) of tethered wind and marine hydrokinetic energy systems. The replacement of conventional towers with tethers necessitates a dynamic model that captures the flight characteristics of each system, whereas the arrangement of the systems in an array necessitates a wake interaction model. The integration of these components is unique to the tethered energy systems literature and is applicable to both airborne wind energy systems and tethered marine hydrokinetic energy systems. In the application case study of this paper, we focus specifically on arrays of ocean current turbines (OCTs), which are intended to operate in the deep waters of the Gulf Stream, adjacent to the eastern coast of the United States. In particular, we evaluate the dynamic performance and resulting projected energy output of an array of tethered OCTs, based on real Gulf Stream resource data from an acoustic Doppler current profiler (ADCP) located adjacent to Cape Hatteras, North Carolina.


Energy ◽  
2020 ◽  
Vol 202 ◽  
pp. 117749 ◽  
Author(s):  
V. Tamimi ◽  
M.J. Esfehani ◽  
M. Zeinoddini ◽  
S.T.O. Naeeni ◽  
J. Wu ◽  
...  

2020 ◽  
Author(s):  
Shannon Coates ◽  
Gwen Lockhart ◽  
Sarah Courbis ◽  
Kaustubha Raghukumar ◽  
Samuel McWilliams ◽  
...  

2020 ◽  
Vol 54 (6) ◽  
pp. 24-36
Author(s):  
Michael Muglia ◽  
Harvey Seim ◽  
Patterson Taylor

AbstractMulti-year measurements of current velocity, salinity, and temperature from fixed and vessel-mounted sensors quantify Gulf Stream (GS) marine hydrokinetic energy (MHK) resource variability and inform development off Cape Hatteras, NC. Vessel transects across the GS demonstrate a jet-like velocity structure with speeds exceeding 2.5 m/s at the surface, persistent horizontal shear throughout the jet, and strongest vertical shears within the cyclonic shear zone. Persistent equatorward flow at the base of the GS associated with the Deep Western Boundary Current (DWBC) produces a local maximum in vertical shear where stratification is weak and is postulated to be a site of strong turbulent mixing. Repeated transects at the same location demonstrate that the velocity structure depends upon whether the GS abuts the shelf slope or is offshore.Currents from a fixed acoustic Doppler current profiler (ADCP) deployed on the shoreward side of the GS exceed 1 m/s 64% of the time 40 m below the surface. The 3.75-year time series of currents from the ADCP mooring document large, roughly weekly variations in downstream and cross-stream speed (−0.5 to 2.5 m/s) and shear (± 0.05 s−1) over the entire water column due to passage of GS meanders and frontal eddies. Current reversals from the mean GS direction occur several times a month, and longer period variations in GS offshore position can result in reduced currents for weeks at a time. Unresolved small-scale shear is postulated to contribute significantly to turbulent mixing.


2018 ◽  
pp. 457-491
Author(s):  
Kevin A. Haas ◽  
Alexandra C. Muscalus

Sign in / Sign up

Export Citation Format

Share Document