Controllability Insurance of the Boost Converters Dedicated to Fuel Cell Management System

Author(s):  
Milad Bahrami ◽  
Jean-Philippe Martin ◽  
Gaël Maranzana ◽  
Serge Pierfederici ◽  
Farid Meibodi-Tabar ◽  
...  
Author(s):  
Mohamed Sameh Elkerdany ◽  
Ibrahim Mohamed Safwat ◽  
Ahmed Medhat Mohamed Yossef ◽  
Mohamed M. Elkhatib

Author(s):  
Phatiphat Thounthong ◽  
Pongsiri Mungporn ◽  
Damien Guilbert ◽  
Noureddine Takorabet ◽  
Serge Pierfederici ◽  
...  

2008 ◽  
Vol 5 (1) ◽  
Author(s):  
Nicolas Romani ◽  
Emmanuel Godoy ◽  
Dominique Beauvois ◽  
Vincent Le Lay

With the purpose of meeting the specifically restrictive requirements of fuel reforming fuel cell vehicle, this paper brings into focus the issues of the transient operation of fuel cell systems and presents a control-oriented dynamic model of fuel cell air management system, suited for multivariable controller design, system optimization, and supervisory control strategy. In a first step, the dual analytical approach based on lumped and distributed parameter models is detailed: The partial differential equations deduced from mass/energy conservation laws and inertial dynamics are reduced to ordinary differential equations using spatial discretization and then combined with semiempirical actuator models to form the overall air system model. In a second step, a classical approach is followed to obtain a local linearization of the model. A validation of both nonlinear and linearized versions is performed by computational fluid dynamics simulations and experiments on a dedicated air system test bench. Thanks to dynamic analysis (pole/zero map), operating point impact and model order reduction are investigated. Finally, the multiinput multioutput state-space model—which balances model fidelity with model simplicity—can be coupled with reformer, stack, and thermal models to understand the system complexity and to develop model-based control methodologies.


2021 ◽  
Vol 25 (4 Part B) ◽  
pp. 2923-2931
Author(s):  
Wenfeng Bai ◽  
Caofeng He

Vehicle fuel cell systems release a large amount of heat while generating electricity. The suitable thermal management system must be built to ensure system performance and reliability. Based on the analysis of the working principle of the vehicle fuel cell thermal management system, the paper establishes a control-oriented fuel cell thermal management. The stack, air cooler, hydrogen heat exchanger, bypass valve, heat sink, and cooling water circulating pump model are taking into account. System model, and the relationship between stack current, coolant flow rate, fin surface wind speed, bypass valve opening, and fuel cell temperature are in established in simulation experiments. The paper discusses their effects on system as a whole, air coolers, hydrogen heat exchangers, and the influence of the temperature difference between the inlet and outlet of the radiator. The simulation results can provide guidance and help to design the fuel cell thermal management control system.


Sign in / Sign up

Export Citation Format

Share Document