scholarly journals Reducing Distributional Uncertainty by Mutual Information Maximisation and Transferable Feature Learning

Author(s):  
Jian Gao ◽  
Yang Hua ◽  
Guosheng Hu ◽  
Chi Wang ◽  
Neil M. Robertson
2019 ◽  
Vol 9 (13) ◽  
pp. 2682
Author(s):  
Xiang Wu ◽  
Dumidu S. Talagala ◽  
Wen Zhang ◽  
Thushara D. Abhayapala

The increasing importance of spatial audio technologies has demonstrated the need and importance of correctly adapting to the individual characteristics of the human auditory system, and illustrates the crucial need for humanoid localization systems for testing these technologies. To this end, this paper introduces a novel feature analysis and selection approach for binaural localization and builds a probabilistic localization mapping model, especially useful for the vertical dimension localization. The approach uses the mutual information as a metric to evaluate the most significant frequencies of the interaural phase difference and interaural level difference. Then, by using the random forest algorithm and embedding the mutual information as a feature selection criteria, the feature selection procedures are encoded with the training of the localization mapping. The trained mapping model is capable of using interaural features more efficiently, and, because of the multiple-tree-based model structure, the localization model shows robust performance to noise and interference. By integrating the direct path relative transfer function estimation, we propose to devise a novel localization approach that has improved performance in the presence of noise and reverberation. The proposed mapping model is compared with the state-of-the-art manifold learning procedure in different acoustical configurations, and a more accurate and robust output can be observed.


Author(s):  
Antara Dasgupta ◽  
Renaud Hostache ◽  
RAAJ Ramasankaran ◽  
Guy J.‐P Schumann ◽  
Stefania Grimaldi ◽  
...  

1997 ◽  
Vol 36 (04/05) ◽  
pp. 257-260 ◽  
Author(s):  
H. Saitoh ◽  
T. Yokoshima ◽  
H. Kishida ◽  
H. Hayakawa ◽  
R. J. Cohen ◽  
...  

Abstract:The frequency of ventricular premature beats (VPBs) has been related to the risk of mortality. However, little is known about the temporal pattern of occurrence of VPBs and its relationship to autonomic activity. Hence, we applied a general correlation measure, mutual information, to quantify how VPBs are generated over time. We also used mutual information to determine the correlation between VPB production and heart rate in order to evaluate effects of autonomic activity on VPB production. We examined twenty subjects with more than 3000 VPBs/day and simulated ran-( dom time series of VPB occurrence. We found that mutual information values could be used to characterize quantitatively the temporal patterns of VPB generation. Our data suggest that VPB production is not random and VPBs generated with a higher value of mutual information may be more greatly affected by autonomic activity.


1978 ◽  
Vol 17 (01) ◽  
pp. 36-40 ◽  
Author(s):  
J.-P. Durbec ◽  
Jaqueline Cornée ◽  
P. Berthezene

The practice of systematic examinations in hospitals and the increasing development of automatic data processing permits the storing of a great deal of information about a large number of patients belonging to different diagnosis groups.To predict or to characterize these diagnosis groups some descriptors are particularly useful, others carry no information. Data screening based on the properties of mutual information and on the log cross products ratios in contingency tables is developed. The most useful descriptors are selected. For each one the characterized groups are specified.This approach has been performed on a set of binary (presence—absence) radiological variables. Four diagnoses groups are concerned: cancer of pancreas, chronic calcifying pancreatitis, non-calcifying pancreatitis and probable pancreatitis. Only twenty of the three hundred and forty initial radiological variables are selected. The presence of each corresponding sign is associated with one or more diagnosis groups.


Sign in / Sign up

Export Citation Format

Share Document