A Preliminary Study on Reaching Position Estimation Model for the Subtle Action Disruption

Author(s):  
Yoshinobu Miya ◽  
Takehiko Yamaguchi ◽  
Tania Giovannetti ◽  
Maiko Sakamoto ◽  
Hayato Ohwada
2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Baozhong Li ◽  
Yanming Liu ◽  
Hailin Li

As the basis of animals’ natal homing behavior, path integration can continuously provide current position information relative to the initial position. Some neurons in freely moving animals’ brains can encode current positions and surrounding environments by special firing patterns. Research studies show that neurons such as grid cells (GCs) in the hippocampus of animals’ brains are related to the path integration. They might encode the coordinate of the animal’s current position in the same way as the residue number system (RNS) which is based on the Chinese remainder theorem (CRT). Hence, in order to provide vehicles a bionic position estimation method, we propose a model to decode the GCs’ encoding information based on the improved traditional self-organizing map (SOM), and this model makes full use of GCs’ firing characteristics. The details of the model are discussed in this paper. Besides, the model is realized by computer simulation, and its performance is analyzed under different conditions. Simulation results indicate that the proposed position estimation model is effective and stable.


2021 ◽  
Vol 114 ◽  
pp. 102445
Author(s):  
Amir Guidara ◽  
Ghofrane Fersi ◽  
Maher Ben Jemaa ◽  
Faouzi Derbel

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Qin Qin ◽  
Yi Tian ◽  
Xin Wang

Sensor nodes in underwater wireless sensor networks (UWSNs) are in a three-dimensional space, and water fluidity continuously changes the positioning in water, the clock synchronization of underwater nodes is challenging, and ranging algorithms affected by water flow produce large errors. A three-dimensional UWSN positioning algorithm based on modified RSSI values is proposed to address the problem of UWSN positioning algorithms being susceptible to water influence and prone to unstable positioning and large positioning errors. An unlocated node screens the received anchor node signal strength and then makes a weighted correction to reduce the influence of the water environment and improve the ranging accuracy. A position estimation model is proposed and combined with a three-dimensional underwater model and least squares method to deduce the unlocated node’s position on the basis of the distance between the unlocated node and the anchor node. The proposed algorithm effectively reduces the influence of the water environment on the ranging algorithm’s accuracy and improves the performance of three-dimensional underwater positioning algorithms. Simulation results show that the proposed algorithm can effectively reduce the influence of the underwater environment on positioning algorithms.


2019 ◽  
Vol 21 (4) ◽  
pp. 571-592
Author(s):  
Jiramate Changklom ◽  
Ivan Stoianov

Abstract The implementation of robust hydraulic control in water supply networks relies upon the utilisation of redundant flow estimation methods. In this paper, we propose a novel model-based flow estimation method for diaphragm-actuated globe valves based on three pressure signals, namely the valve inlet pressure, valve outlet pressure and control chamber pressure (the 3P flow estimation method). The proposed flow estimation method relies upon the accurate determination of a valve stem position based on a force-balance analysis for the diaphragm of a valve, the measured pressure differential across a valve and the flow coefficients of a valve (, ). A novel stem position estimation model for diaphragm-actuated globe valves has been formulated and experimentally validated. The non-linear parameterised valve stem position estimation model results in multiple solutions. We combine advances in signal processing with support vector machine classification to find a correct solution. We compare the proposed flow estimation method with a method that uses stem position sensor measurements of a valve and two pressure signals. A unique set of experimental data have been acquired for performance validation. We derive uncertainty bounds for the proposed flow estimation method and demonstrate its application for robust pressure control in water supply networks.


Author(s):  
John H.L. Watson ◽  
John L. Swedo ◽  
R.W. Talley

A preliminary study of human mammary carcinoma on the ultrastructural level is reported for a metastatic, subcutaneous nodule, obtained as a surgical biopsy. The patient's tumor had responded favorably to a series of hormonal therapies, including androgens, estrogens, progestins, and corticoids for recurring nodules over eight years. The pertinent nodule was removed from the region of the gluteal maximus, two weeks following stilbestrol therapy. It was about 1.5 cms in diameter, and was located within the dermis. Pieces from it were fixed immediately in cold fixatives: phosphate buffered osmium tetroxide, glutaraldehyde, and paraformaldehyde. Embedment in each case was in Vestopal W. Contrasting was done with combinations of uranyl acetate and lead hydroxide.


Author(s):  
H.D. Geissinger ◽  
C.K. McDonald-Taylor

A new strain of mice, which had arisen by mutation from a dystrophic mouse colony was designated ‘mdx’, because the genetic defect, which manifests itself in brief periods of muscle destruction followed by episodes of muscle regeneration appears to be X-linked. Further studies of histopathological changes in muscle from ‘mdx’ mice at the light microscopic or electron microscopic levels have been published, but only one preliminary study has been on the tibialis anterior (TA) of ‘mdx’ mice less than four weeks old. Lesions in the ‘mdx’ mice vary between different muscles, and centronucleation of fibers in all muscles studied so far appears to be especially prominent in older mice. Lesions in young ‘mdx’ mice have not been studied extensively, and the results appear to be at variance with one another. The degenerative and regenerative aspects of the lesions in the TA of 23 to 26-day-old ‘mdx’ mice appear to vary quantitatively.


Author(s):  
J P Cassella ◽  
V Salih ◽  
T R Graham

Left ventricular assist systems are being developed for eventual long term or permanent implantation as an alternative to heart transplantation in patients unsuitable for or denied the transplant option. Evaluation of the effects of these devices upon normal physiology is required. A preliminary study was conducted to evaluate the morphology of aortic tissue from calves implanted with a pneumatic Left Ventricular Assist device-LVAD. Two 3 month old heifer calves (calf 1 and calf 2) were electively explanted after 128 days and 47 days respectively. Descending thoracic aortic tissue from both animals was removed immediately post mortem and placed into karnovsky’s fixative. The tissue was subsequently processed for transmission electron microscopy (TEM). Some aortic tissue was fixed in neutral buffered formalin and processed for routine light microscopy.


2021 ◽  
Author(s):  
Hicham Zaroual ◽  
El Mestafa El Hadrami ◽  
Romdhane Karoui

This study examines the feasibility of using front face fluorescence spectroscopy (FFFS) to authenticate 41 virgin olive oil (VOO) samples collected from 5 regions in Morocco during 2 consecutive crop seasons.


Sign in / Sign up

Export Citation Format

Share Document