Data-Driven State Awareness for Fly-by-Feel Aerial Vehicles via Adaptive Time Series and Gaussian Process Regression Models

Author(s):  
Shabbir Ahmed ◽  
Ahmad Amer ◽  
Carlos A. Varela ◽  
Fotis Kopsaftopoulos
Author(s):  
Aidin Tamhidi ◽  
Nicolas Kuehn ◽  
S. Farid Ghahari ◽  
Arthur J. Rodgers ◽  
Monica D. Kohler ◽  
...  

ABSTRACT Ground-motion time series are essential input data in seismic analysis and performance assessment of the built environment. Because instruments to record free-field ground motions are generally sparse, methods are needed to estimate motions at locations with no available ground-motion recording instrumentation. In this study, given a set of observed motions, ground-motion time series at target sites are constructed using a Gaussian process regression (GPR) approach, which treats the real and imaginary parts of the Fourier spectrum as random Gaussian variables. Model training, verification, and applicability studies are carried out using the physics-based simulated ground motions of the 1906 Mw 7.9 San Francisco earthquake and Mw 7.0 Hayward fault scenario earthquake in northern California. The method’s performance is further evaluated using the 2019 Mw 7.1 Ridgecrest earthquake ground motions recorded by the Community Seismic Network stations located in southern California. These evaluations indicate that the trained GPR model is able to adequately estimate the ground-motion time series for frequency ranges that are pertinent for most earthquake engineering applications. The trained GPR model exhibits proper performance in predicting the long-period content of the ground motions as well as directivity pulses.


2021 ◽  
Author(s):  
Joel C. Najmon ◽  
Homero Valladares ◽  
Andres Tovar

Abstract Multiscale topology optimization (MSTO) is a numerical design approach to optimally distribute material within coupled design domains at multiple length scales. Due to the substantial computational cost of performing topology optimization at multiple scales, MSTO methods often feature subroutines such as homogenization of parameterized unit cells and inverse homogenization of periodic microstructures. Parameterized unit cells are of great practical use, but limit the design to a pre-selected cell shape. On the other hand, inverse homogenization provide a physical representation of an optimal periodic microstructure at every discrete location, but do not necessarily embody a manufacturable structure. To address these limitations, this paper introduces a Gaussian process regression model-assisted MSTO method that features the optimal distribution of material at the macroscale and topology optimization of a manufacturable microscale structure. In the proposed approach, a macroscale optimization problem is solved using a gradient-based optimizer The design variables are defined as the homogenized stiffness tensors of the microscale topologies. As such, analytical sensitivity is not possible so the sensitivity coefficients are approximated using finite differences after each microscale topology is optimized. The computational cost of optimizing each microstructure is dramatically reduced by using Gaussian process regression models to approximate the homogenized stiffness tensor. The capability of the proposed MSTO method is demonstrated with two three-dimensional numerical examples. The correlation of the Gaussian process regression models are presented along with the final multiscale topologies for the two examples: a cantilever beam and a 3-point bending beam.


2018 ◽  
Vol 38 (4) ◽  
pp. 1800115 ◽  
Author(s):  
Christoph A. Bauer ◽  
Gisbert Schneider ◽  
Andreas H. Göller

2021 ◽  
Vol 4 (3) ◽  
pp. 1-16
Author(s):  
Giulio Ortali ◽  
◽  
Nicola Demo ◽  
Gianluigi Rozza ◽  

<abstract><p>This work describes the implementation of a data-driven approach for the reduction of the complexity of parametrical partial differential equations (PDEs) employing Proper Orthogonal Decomposition (POD) and Gaussian Process Regression (GPR). This approach is applied initially to a literature case, the simulation of the Stokes problem, and in the following to a real-world industrial problem, within a shape optimization pipeline for a naval engineering problem.</p></abstract>


2021 ◽  
Vol 147 (4) ◽  
pp. 04021008
Author(s):  
Yutao Pang ◽  
Xiaoyong Zhou ◽  
Wei He ◽  
Jian Zhong ◽  
Ouyang Hui

Author(s):  
Rachel Cohen ◽  
Geoff Fernie ◽  
Atena Roshan Fekr

Tripping hazards on the sidewalk cause many falls annually, and the inspection and repair of these hazards cost cities millions of dollars. Currently, there is not an efficient and cost-effective method to monitor the sidewalk to identify any possible tripping hazards. In this paper, a new portable device is proposed using an Intel RealSense D415 RGB-D camera to monitor the sidewalks, detect the hazards, and extract relevant features of the hazards. This paper first analyzes the effects of environmental factors contributing to the device’s error and compares different regression techniques to calibrate the camera. The Gaussian Process Regression models yielded the most accurate predictions with less than 0.09 mm Mean Absolute Errors (MAEs). In the second phase, a novel segmentation algorithm is proposed that combines the edge detection and region-growing techniques to detect the true tripping hazards. Different examples are provided to visualize the output results of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document