Conditioned Simulation of Ground-Motion Time Series at Uninstrumented Sites Using Gaussian Process Regression

Author(s):  
Aidin Tamhidi ◽  
Nicolas Kuehn ◽  
S. Farid Ghahari ◽  
Arthur J. Rodgers ◽  
Monica D. Kohler ◽  
...  

ABSTRACT Ground-motion time series are essential input data in seismic analysis and performance assessment of the built environment. Because instruments to record free-field ground motions are generally sparse, methods are needed to estimate motions at locations with no available ground-motion recording instrumentation. In this study, given a set of observed motions, ground-motion time series at target sites are constructed using a Gaussian process regression (GPR) approach, which treats the real and imaginary parts of the Fourier spectrum as random Gaussian variables. Model training, verification, and applicability studies are carried out using the physics-based simulated ground motions of the 1906 Mw 7.9 San Francisco earthquake and Mw 7.0 Hayward fault scenario earthquake in northern California. The method’s performance is further evaluated using the 2019 Mw 7.1 Ridgecrest earthquake ground motions recorded by the Community Seismic Network stations located in southern California. These evaluations indicate that the trained GPR model is able to adequately estimate the ground-motion time series for frequency ranges that are pertinent for most earthquake engineering applications. The trained GPR model exhibits proper performance in predicting the long-period content of the ground motions as well as directivity pulses.

2020 ◽  
Author(s):  
Aidin Tamhidi ◽  
Nicolas Kuehn ◽  
S. Farid Ghahari ◽  
Ertugrul Taciroglu ◽  
Yousef Bozorgnia

Ground motion time series are critical elements of earthquake engineering for performance analysis of seismic regions’ built environment. At present, the number of available instruments to record the free-field ground motions in the US is generally sparse. Therefore, ground motion estimation methods are used to obtain input motion estimates at locations where there is no available instrumentation. In this study, the ground motion time series are constructed using a Gaussian Process regression, which models the Fourier spectrum’s real and imaginary parts as random Gaussian variables. The proposed model’s training and validation are carried out using the physics-based simulated ground motions of the 1906 San Francisco Earthquake. The evaluation of the model’s performance is also carried out using the simulated magnitude 7.0 Hayward fault earthquake and the ground motions recorded in the 2019 magnitude 7.1 Ridgecrest Earthquake sequence within the Los Angeles area. All evaluations imply that the trained Gaussian Process regression model can estimate the ground motion time series properly. It is also observed that the trained Gaussian Process regression model has decent performance on the long-period ground motion estimation due to the ground motion directivity pulses. The results also illustrate that the stations’ prediction either at the boundary edges or outside of the network might not be as accurate as other stations’ estimations.


2021 ◽  
pp. 875529302098197
Author(s):  
Jack W Baker ◽  
Sanaz Rezaeian ◽  
Christine A Goulet ◽  
Nicolas Luco ◽  
Ganyu Teng

This manuscript describes a subset of CyberShake numerically simulated ground motions that were selected and vetted for use in engineering response-history analyses. Ground motions were selected that have seismological properties and response spectra representative of conditions in the Los Angeles area, based on disaggregation of seismic hazard. Ground motions were selected from millions of available time series and were reviewed to confirm their suitability for response-history analysis. The processes used to select the time series, the characteristics of the resulting data, and the provided documentation are described in this article. The resulting data and documentation are available electronically.


2021 ◽  
Vol 37 (1_suppl) ◽  
pp. 1331-1353
Author(s):  
Christine A Goulet ◽  
Tadahiro Kishida ◽  
Timothy D Ancheta ◽  
Chris H Cramer ◽  
Robert B Darragh ◽  
...  

This article documents the earthquake ground motion database developed for the NGA-East Project, initiated as part of the Next Generation Attenuation (NGA) research program and led by the Pacific Earthquake Engineering Research Center (PEER). The project was focused on developing a ground motion characterization model (GMC) model for horizontal ground motions for the large region referred to as Central and Eastern North America (CENA). The CENA region covers most of the U.S. and Canada, from the Rocky Mountains to the Atlantic Ocean and is characterized tectonically as a stable continental region (SCR). The ground-motion database includes the two- and three-component ground-motion recordings from numerous selected events relevant to CENA ( M > 2.5, with distances up to 3500 km) that have been recorded since 1976. The final database contains over 27,000 time series from 82 earthquakes and 1271 recording stations. The ground motion database includes uniformly processed time series, 5% damped pseudo-spectral acceleration (PSA) median-component ordinates for 429 periods ranging from 0.01 to 10 s, duration and Arias intensity in 5% increments, and Fourier amplitude spectra for different time windows. Ground motions and metadata for source, path, and site conditions were subjected to quality checks by topical working groups and the ground-motion model (GMM) developers. The NGA-East database constitutes the largest database of processed recorded ground motions in SRCs and is publicly available from the PEER ground-motion database website.


1995 ◽  
Vol 85 (3) ◽  
pp. 937-942
Author(s):  
Martin C. Chapman

Abstract The solutions of many earthquake engineering problems involve dynamic analyses using ground-motion time series. It is often desirable to base the selection of such motions on a probabilistic estimate of the seismic hazard. The hazard density function evaluated at a chosen hazard level provides the information necessary to determine objectively the most likely earthquake events, defined by magnitude and distance, that contribute to seismic hazard. For a wide range of hazard models it is possible to show that the difference between the median motion at a site, given the occurrence of the most likely event, and the motion value corresponding to a specified hazard level, is due entirely to the modeling of random error in the strong-motion data set. This points to a straightforward approach to selecting ground-motion recordings that represent the most likely time-domain realizations of the hazard model for a given motion parameter and hazard level. Ground-motion time series selection and/or synthesis based upon this approach, for various frequency bands of the response spectrum, can provide an optimum basis for seismic design.


1992 ◽  
Vol 82 (2) ◽  
pp. 603-641 ◽  
Author(s):  
Roger D. Borcherdt ◽  
Gary Glassmoyer

Abstract Strong ground motions recorded at 34 sites in the San Francisco Bay region from the Loma Prieta earthquake show marked variations in characteristics dependent on crustal structure and local geological conditions. Peak horizontal acceleration and velocity inferred for sites underlain by “rock” generally occur on the transverse component of motion. They are consistently greater with lower attenuation rates than the corresponding mean value predicted by empirical curves based on previous strong-motion data. Theoretical amplitude distributions and synthetic seismograms calculated for 10-layer models suggest that “bedrock” motions were elevated due in part to the wide-angle reflection of S energy from the base of a relatively thin (25 km) continental crust in the region. Characteristics of geologic and geotechnical units as currently mapped for the San Francisco Bay region show that average ratios of peak horizontal acceleration, velocity and displacement increase with decreasing mean shear-wave velocity. Ratios of peak acceleration for sites on “soil” (alluvium, fill/Bay mud) are statistically larger than those for sites on “hard rock” (sandstone, shale, Franciscan Complex). Spectral ratios establish the existence of predominant site periods with peak amplifications near 15 for potentially damaging levels of ground motion at some sites underlain by alluvium and fill/bay mud. Average spectral amplifications inferred for vertical and the mean horizontal motion are, respectively, (1,1) for sites on the Franciscan Complex (KJf), (1.4, 1.5) for sites on Mesozoic and Tertiary rocks (TMzs), (2.1, 2.0) for sites on the Santa Clara Formation (QTs), (2.3, 2.9) for sites on alluvium (Qal), and (2.1, 4.0) for sites on fill/Bay mud (Qaf/Qhbm). These mean values are not statistically different at the 5% significance level from those inferred from previous low-strain data. Analyses suggest that soil amplification and reflected crustal shear energy were major contributors to levels of ground motion sufficient to cause damage to vulnerable structures at distances near 100 km in the cities of San Francisco and Oakland.


2017 ◽  
Vol 33 (3) ◽  
pp. 875-894 ◽  
Author(s):  
Tadahiro Kishida ◽  
Danilo Di Giacinto ◽  
Giuseppe Iaccarino

Numerous time series for small-to-moderate-magnitude (SMM) earthquakes have been recorded in many regions. A uniformly-processed ground-motion database is essential in the development of regional ground-motion models. An automated processing protocol is useful in developing the database for these earthquakes especially when the number of recordings is substantial. This study compares a manual and an automated ground-motion processing methods using SMM earthquakes. The manual method was developed by the Pacific Earthquake Engineering Research Center to build the database of time series and associated ground-motion parameters. The automated protocol was developed to build a database of pseudo-spectral acceleration for the Kiban-Kyoshin network recordings. Two significant differences were observed when the two methods were applied to identical acceleration time series. First, the two methods differed in the criteria for the acceptance or rejection of the time series in the database. Second, they differed in the high-pass corner frequency used to filter noise from the acceleration time series. The influences of these differences were investigated on ground-motion parameters to elucidate the quality of ground-motion database for SMM earthquakes.


Author(s):  
Jun Gong ◽  
Xudong Zhi ◽  
Feng Fan ◽  
Shizhao Shen ◽  
Da Qaio ◽  
...  

To investigate the variability of ground motion characteristics (GMC) with the angle of seismic incidence (ASI) and the impact of seismic incident directionality on structural responses, first, a large-scale database of recorded ground motions was used to analyze the causes of GMC variability due to the seismic incident directionality effect (SIDE). Then a single-mass bi-degree-of-freedom system (SM-BDOF-S) with different types of symmetrical sections was selected to explore the influence mechanism of SIDE on the seismic responses. The results illustrated that the GMC has substantial variability with the ASI, which is independent of the earthquake source, propagation distance, and site condition, and exhibits complex random characteristics. Additionally, a classification method for ground motions is proposed based on this GMC variability to establish a criterion for selecting ground motions in seismic analysis considering the SIDE. Moreover, for an SM-BDOF-S, the response spectral plane is proposed to explain the transition behavior of spectral responses that are very similar among different stiffness ratios, but divergent for different types of ground motions. The influence of SIDE on structures is determined by their stiffness and stiffness ratio in the [Formula: see text]- and [Formula: see text]-directions, as well as the type of ground motion.


Author(s):  
Hoang Nam Phan ◽  
Fabrizio Paolacci

Liquid storage tanks are vital lifeline structures and have been widely used in industries and nuclear power plants. In performance-based earthquake engineering, the assessment of probabilistic seismic risk of structural components at a site is significantly affected by the choice of ground motion intensity measures (IMs). However, at present there is no specific widely accepted procedure to evaluate the efficiency of IMs used in assessing the seismic performance of steel storage tanks. The study presented herein concerns the probabilistic seismic analysis of anchored above-ground steel storage tanks subjected to several sets of ground motion records. The engineering demand parameters for the analysis are the compressive meridional stress in the tank wall and the sloshing wave height of the liquid free surface. The efficiency and sufficiency of each alternative IM are quantified by results of time history analyses for the structural response and a proper regression analysis. According to the comparative study results, this paper proposes the most efficient and sufficient IMs with respect to the above demand parameters for a portfolio of anchored steel storage tanks.


2020 ◽  
Author(s):  
Chun-Hsiang Kuo ◽  
Shu-Hsien Chao ◽  
Che-Min Lin ◽  
Jyun-Yan Huang ◽  
Kuo-Liang Wen

<p>Site amplification behavior are important in ground motion prediction. Seismic waves were amplified and caused significant building damages in the Taipei Basin by the 1986 Hualien offshore (subduction interface) and the 1999 Chi-Chi earthquakes (crustal), for which both of the epicentral distances were nearly 100 km. To understand local site amplifications in Taiwan, empirical site amplification factors for both horizontal and vertical ground motions are studied using recently constructed strong motion and site databases for the free-field TSMIP stations. Records of large magnitude earthquakes of M<sub>W</sub> larger than 5.5 from 1991 to 2016 were selected for this study. Site amplification factors at site conditions with Vs30 between 120 m/s to 1600 m/s and bedrock accelerations up to 0.8 g were evaluated using ratios of spectral accelerations at different periods. The reference site condition, i.e. the engineering bedrock, is assumed as Vs30 of 760 m/s (B/C boundary) in this study. Our empirical site amplification form are borrowed from the site response function of ASK14 and CY14 ground motion models in NGA-West2 project with slight modification. Therefore our site amplification model includes a linear amplification term and a nonlinear deamplification term. The coefficients of the empirical models were obtained by a nonlinear regression analysis using the selected Taiwan data. Site amplification factor is a function of Vs30 and spectral intensity in the model. Similar linear site amplification factor to the NGA models is derived in our model; however, more significant soil nonlinearity behavior than the NGA models is likely captured from the empirical data. The amplification factor in vertical component is smaller than that in horizontal.</p>


Sign in / Sign up

Export Citation Format

Share Document